Resumen
The grounding grid of a substation is important for the safety of substation equipment. Especially to address the difficulty of parameter design in the auxiliary anode system of a grounding grid, an algorithm is proposed that is an optimization algorithm for the auxiliary anode system of a grounding grid based on improved simulated annealing. The mathematical model of the auxiliary anode system is inferred from the mathematical model of cathodic protection. On that basis, the parameters of the finite element model are optimized with the improved simulated annealing algorithm, thereby the auxiliary anode system of a grounding grid with optimized parameters is structured. Then the algorithm is proven as valid through experiments. The precision of the optimized parameters is improved by about 1.55% with respect to the Variable Metric Method and the Genetic Algorithm, so it can provide a basis for parameter design in the auxiliary anode system of a grounding grid.