Resumen
Besides genetic characteristics, people also undergo a process of skin aging under the influence of diverse factors such as sun exposure, food intake, sleeping patterns, and drinking habits, which are closely related to their personal lifestyle. So far, many studies have been conducted to analyze skin conditions quantitatively. However, to describe the current skin condition or predict future skin aging effectively, we need to understand the correlation between skin aging and lifestyle. In this study, we first demonstrate how to trace people?s skin condition accurately using scale-invariant feature transform and the color histogram intersection method. Then, we show how to estimate skin texture aging depending on the lifestyle by considering various features from face, neck, and hand dermoscopy images. Lastly, we describe how to predict future skin conditions in terms of skin texture features. Based on the Pearson correlation, we describe the correlation between skin aging and lifestyle, and estimate skin aging according to lifestyle using the polynomial regression and support vector regression models. We evaluate the performance of our proposed scheme through various experiments.