Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  Buildings  /  Vol: 13 Par: 6 (2023)  /  Artículo
ARTÍCULO
TITULO

Seismic Performance of SFRC Shear Walls with Window Opening and the Substitution Effect for Steel Bars

Hongmei Zhang    
Zizhao Tang    
Yuanfeng Duan and Zhiyuan Chen    

Resumen

Shear walls are important vertical and lateral bearing element in structures. While shear walls with openings are fragile due to stress concentration and the quasi-brittle behavior of concrete in tension. Therefore, additional strengthening rebars are required for the shear walls with openings. However, it aggravates the problem of dense reinforcement which increases the steel cage manufacturing and concrete compaction problem and still lacks countermeasures against concrete damage and cracking. To reduce the rebar demand and improve the damage tolerance of squat reinforced concrete (RC) shear walls with openings, an optimized steel-fiber-reinforced concrete (SFRC) was adopted to understand the seismic performance by cyclical loading test. The tested specimens included a plain RC shear wall without strengthening bar around the opening (for comparison), an SFRC shear wall, and an SFRC shear wall with a reduced distributed steel bar. This paper mainly studies the effect of using SFRC to improve the seismic performance of the open shear wall and to replace the reinforcement around the opening and the shear reinforcement. The hysteresis curves, skeleton curves, stiffness degradation, bearing capacity degradation and energy dissipation of the specimens were analyzed. The results show that the failure can be delayed and relieved, the deformation capacity and energy dissipation can considerably improve, and rebars can be partially replaced by using SFRC.

 Artículos similares

       
 
Runqi Guo, Haiying Zhang, Kezheng Chen, Yang Song, Hongxia Li, Lin Ding and Yanjie Liu    
In order to improve the seismic performance of reinforced concrete (RC) columns, a reinforcement technology using prestressed steel wire ropes embedded in polyurethane cement composite material is proposed. Four concrete columns reinforced with different... ver más
Revista: Buildings

 
Jian Yang, Ming Sun, Guohuang Yao, Haizhu Guo and Rumian Zhong    
This study explores an advanced prefabricated composite structure, namely ECC/RC composite shear walls with enhanced seismic performance. This performance enhancement is attributed to the strategic use of engineered cementitious composites (ECC) known fo... ver más
Revista: Buildings

 
Can Tang, Xinchao Hou, Yanjie Xu and Feng Jin    
A rock-filled concrete (RFC) dam is an original dam construction technology invented in China nearly 20 years ago. The technology has been continuously improved and innovated upon, and the accumulated rich practical experience gradually formed a complete... ver más
Revista: Infrastructures

 
Longfei Zhang, Xiang Lan, Kechuan Wu and Wenzheng Yu    
When subjected to seismic activity, tall isolated buildings with a high aspect ratio are susceptible to overturning as a result of the failure of rubber isolation bearings under tension. In order to address this issue, a guided-rail tension device (GR) h... ver más
Revista: Buildings

 
Evangelos Sapountzakis, Georgios Florakis and Konstantinos Kapasakalis    
This paper investigates the implementation of supplemental vibration control systems (VCS) in base isolated (BI) structures, to improve their dynamic performance. More specifically, the aim of the VCS is to reduce the base displacement demand of BI struc... ver más
Revista: Buildings