Resumen
As the world is digitizing fast, the increase in Big and Small Data offers opportunities to enrich official statistics for reporting on Sustainable Development Goals (SDG). However, survey data coming from an increased number of organizations (Small Data) and Big Data offer challenges in terms of data heterogeneity. This paper describes a methodology for combining various data sources to create a more comprehensive dataset on SDG 6.1.1. (proportion of population using safely managed drinking water services). We enabled digital volunteers to trace buildings on satellite imagery and used the traces on OpenStreetMap to facilitate visual detection of water points on Unmanned Aerial Vehicle (UAV) imagery and estimate the number of people served per water point. Combining data on water points identified on our UAV imagery with data on water points from field surveys improves the overall quality in terms of removal of inconsistencies and enrichment of attribute information. Satellite imagery enables scaling more easily than UAV imagery but is too costly to acquire at sufficiently high resolution. For small areas, our workflow is cost-effective in creating an up-to-date and consistent water point dataset by combining UAV imagery, Volunteered Geographic Information, and field survey data.