Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Algorithms  /  Vol: 17 Par: 1 (2024)  /  Artículo
ARTÍCULO
TITULO

Hybrid Sparrow Search-Exponential Distribution Optimization with Differential Evolution for Parameter Prediction of Solar Photovoltaic Models

Amr A. Abd El-Mageed    
Ayoub Al-Hamadi    
Samy Bakheet and Asmaa H. Abd El-Rahiem    

Resumen

It is difficult to determine unknown solar cell and photovoltaic (PV) module parameters owing to the nonlinearity of the characteristic current?voltage (I-V) curve. Despite this, precise parameter estimation is necessary due to the substantial effect parameters have on the efficacy of the PV system with respect to current and energy results. The problem?s characteristics make the handling of algorithms susceptible to local optima and resource-intensive processing. To effectively extract PV model parameter values, an improved hybrid Sparrow Search Algorithm (SSA) with Exponential Distribution Optimization (EDO) based on the Differential Evolution (DE) technique and the bound-constraint modification procedure, called ISSAEDO, is presented in this article. The hybrid strategy utilizes EDO to improve global exploration and SSA to effectively explore the solution space, while DE facilitates local search to improve parameter estimations. The proposed method is compared to standard optimization methods using solar PV system data to demonstrate its effectiveness and speed in obtaining PV model parameters such as the single diode model (SDM) and the double diode model (DDM). The results indicate that the hybrid technique is a viable instrument for enhancing solar PV system design and performance analysis because it can predict PV model parameters accurately.

 Artículos similares