Resumen
Compactness and separability of data points are two important properties that contribute to the accuracy of machine learning tasks such as classification and clustering. We propose a framework that enhances the goodness criteria of the two properties by transforming the data points to a subspace in the same feature space, where data points of the same class are most similar to each other. Most related research about feature engineering in the input data points space relies on manually specified transformation functions. In contrast, our work utilizes a fully automated pipeline, in which the transformation function is learnt via an autoencoder for extraction of latent representation and multi-layer perceptron (MLP) regressors for the feature mapping. We tested our framework on both standard small datasets and benchmark-simulated small datasets by taking small fractions of their samples for training. Our framework consistently produced the best results in all semi-supervised clustering experiments based on K-means and different seeding techniques, with regards to clustering metrics and execution time. In addition, it enhances the performance of linear support vector machine (LSVM) and artificial neural network (ANN) classifier, when embedded as a preprocessing step before applying the classifiers.