Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Hydrology  /  Vol: 8 Par: 1 (2021)  /  Artículo
ARTÍCULO
TITULO

Alteration of the Ecohydrological Status of the Intermittent Flow Rivers and Ephemeral Streams due to the Climate Change Impact (Case Study: Tsiknias River)

Soumaya Nabih    
Ourania Tzoraki    
Prodromos Zanis    
Thanos Tsikerdekis    
Dimitris Akritidis    
Ioannis Kontogeorgos and Lahcen Benaabidate    

Resumen

Climate change projections predict the increase of no-rain periods and storm intensity resulting in high hydrologic alteration of the Mediterranean rivers. Intermittent flow Rivers and Ephemeral Streams (IRES) are particularly vulnerable to spatiotemporal variation of climate variables, land use changes and other anthropogenic factors. In this work, the impact of climate change on the aquatic state of IRES is assessed by the combination of the hydrological model Soil and Water Assessment Tool (SWAT) and the Temporary Rivers Ecological and Hydrological Status (TREHS) tool under two different Representative Concentration Pathways (RCP 4.5 and RCP 8.5) using CORDEX model simulations. A significant decrease of 20?40% of the annual flow of the examined river (Tsiknias River, Greece) is predicted during the next 100 years with an increase in the frequency of extreme flood events as captured with almost all Regional Climate Models (RCMs) simulations. The occurrence patterns of hyporheic and edaphic aquatic states show a temporal extension of these states through the whole year due to the elongation of the dry period. A shift to the Intermittent-Pools regime type shows dominance according to numerous climate change scenarios, harming, as a consequence, both the ecological system and the social-economic one.

 Artículos similares

       
 
Venkataramana Sridhar, Hyunwoo Kang and Syed A. Ali    
The Mekong River Basin (MRB) is one of the significant river basins in the world. For political and economic reasons, it has remained mostly in its natural condition. However, with population increases and rapid industrial growth in the Mekong region, th... ver más
Revista: Water

 
Andrea Momblanch, Ian P. Holman and Sanjay K. Jain    
Global change is expected to have a strong impact in the Himalayan region. The climatic and orographic conditions result in unique modelling challenges and requirements. This paper critically appraises recent hydrological modelling applications in Himala... ver más
Revista: Water

 
Valentina Gallina, Silvia Torresan, Alex Zabeo, Jonathan Rizzi, Sandro Carniel, Mauro Sclavo, Lisa Pizzol, Antonio Marcomini and Andrea Critto    
Coastal erosion is an issue of major concern for coastal managers and is expected to increase in magnitude and severity due to global climate change. This paper analyzes the potential consequences of climate change on coastal erosion (e.g., impacts on be... ver más
Revista: Water

 
Huiying Ren, Z. Jason Hou, Mark Wigmosta, Ying Liu and L. Ruby Leung    
Changes in extreme precipitation events may require revisions of civil engineering standards to prevent water infrastructures from performing below the designated guidelines. Climate change may invalidate the intensity-duration-frequency (IDF) computatio... ver más
Revista: Water

 
Jian Hu, Da Lü, Feixiang Sun, Yihe Lü, Youjun Chen and Qingping Zhou    
Soil moisture is a central theme in eco-hydrology. Topography, soil characteristics, and vegetation types are significant factors impacting soil moisture dynamics. However, water loss (evapotranspiration and leakage) and its factors of the self-organized... ver más
Revista: Water