Resumen
A numerical simulation model for a novel concept of a hybrid composed of photovoltaic-thermal solar panels and a heat pump is presented. This concept was developed to assess the performance and energy conversion efficiency of the hybrid system used to produce domestic hot water and electricity. A two-dimensional heat transfer and fluid flow dynamic model was developed to describe the behavior of the hybrid system under different solar irradiance, heat pump boundary conditions and different refrigerants. The model is based on dynamic mass and energy equations coupled with the heat transfer coefficients, and the thermodynamic properties of refrigerants as well as material properties. The model compared fairly to experimental data.