Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  Applied Sciences  /  Vol: 12 Par: 10 (2022)  /  Artículo
ARTÍCULO
TITULO

Numerical Simulation of the Enrichment of Chemotactic Bacteria in Oil-Water Two-Phase Transfer Fields of Heterogeneous Porous Media

Xiaopu Wang    
Lianjie Hou    
Tianhao He    
Zhenhan Diao    
Chuanjin Yao    
Tao Long and Ling Fan    

Resumen

Oil pollution in soil-groundwater systems is difficult to remove, and a large amount of residual oil is trapped in the low permeable layer of the heterogeneous aquifer. Aromatic hydrocarbons in oil have high toxicity and low solubility in water, which are harmful to the ecological environment. Chemotactic degrading bacteria can perceive the concentration gradient of non-aqueous phase liquid (NAPL) pollutants in the groundwater environment, and enrich and proliferate around the pollutants, thus achieving a more efficient and thorough remediation effect. However, the existing theoretical models are relatively simple. The physical fields of oil?water two-phase flow and oil-phase solute convection and diffusion in water are not coupled, which further restricts the accuracy of studies on bacterial chemotaxis to NAPL. In this study, geometric models based on the actual microfluidic experimental study were constructed. Based on the phase field model, diffusion convection equation and chemotaxis velocity equation, the effects of heterogeneity of porous media, wall wettability and groundwater flow rate on the residual oil and the concentration distribution of chemotaxis bacteria were studied. Under all of the simulation conditions, the residual oil in the high permeable area was significantly lower than that in the low permeable area, and the wall hydrophilicity enhanced the water flooding effect. Chemotactic bacteria could react to the concentration gradient of pollutants dissolved into water in the oil phase, and enrich near the oil?water interface with high concentration of NAPL, and the density of chemotactic bacteria at the oil?water interface can be up to 1.8?2 times higher than that in the water phase at flow rates from 1.13 to 6.78 m/d.

 Artículos similares

       
 
Wenze Geng, Zhifei Song, Cheng He, Hongtao Wang and Xinyi Dong    
The type of soil and its compactness significantly influence its permeability coefficient, which in turn affects the drainage difficulty of soil pore water and the distribution of the infiltration line. However, current tailings dam models typically cons... ver más
Revista: Applied Sciences

 
Xin Zhang, Dongmin Yu, Kaifei Zhu, Aolai Zhao and Minghao Ren    
The pile-bucket composite foundation represents an innovative foundation form that surpasses the horizontal bearing performance of both single bucket-shaped foundations and pile foundations. The intricate interplay between piles and buckets introduces th... ver más
Revista: Applied Sciences

 
Chen Liu and Jianghai Li    
The South China Sea is in the convergence zone of the Pacific plate, the Indo-Australian plate, and the Eurasian plate. Its formation and tectonic evolution were influenced by continental margin spreading and plate interaction between the three plates an... ver más
Revista: Applied Sciences

 
Kaipeng Zhu, Kai Li, Yadong Ji, Xiaolong Li, Xuan Liu, Kaide Liu and Xuandong Chen    
The microscopic pore structure of sandstone determines its macroscopic permeability. Based on computer tomography (CT) technology, CT scans were performed on three different types of sandstone pore structures, namely coarse sandstone, medium sandstone, a... ver más
Revista: Water

 
Jinduo Yang, Xi?an Li, Weiping Wang, Hao Chai, Mingxiao An and Qianyi Dai    
The process of dust transportation is widespread, leading to the formation of regions such as the Loess Plateau. In order to understand the mechanisms of dust particle transportation, this study conducted wind tunnel experiments to simulate natural wind-... ver más
Revista: Water