Redirigiendo al acceso original de articulo en 16 segundos...
ARTÍCULO
TITULO

A Machine Learning-Based Pipeline for the Extraction of Insights from Customer Reviews

Róbert Lakatos    
Gergo Bogacsovics    
Balázs Harangi    
István Lakatos    
Attila Tiba    
János Tóth    
Marianna Szabó and András Hajdu    

Resumen

The efficiency of natural language processing has improved dramatically with the advent of machine learning models, particularly neural network-based solutions. However, some tasks are still challenging, especially when considering specific domains. This paper presents a model that can extract insights from customer reviews using machine learning methods integrated into a pipeline. For topic modeling, our composite model uses transformer-based neural networks designed for natural language processing, vector-embedding-based keyword extraction, and clustering. The elements of our model have been integrated and tailored to better meet the requirements of efficient information extraction and topic modeling of the extracted information for opinion mining. Our approach was validated and compared with other state-of-the-art methods using publicly available benchmark datasets. The results show that our system performs better than existing topic modeling and keyword extraction methods in this task.

 Artículos similares

       
 
Hassan Khazane, Mohammed Ridouani, Fatima Salahdine and Naima Kaabouch    
With the rapid advancements and notable achievements across various application domains, Machine Learning (ML) has become a vital element within the Internet of Things (IoT) ecosystem. Among these use cases is IoT security, where numerous systems are dep... ver más
Revista: Future Internet

 
Minghao Liu, Jianxiang Wang, Qingxi Luo, Lingbo Sun and Enming Wang    
Exploring spatial anisotropy features and capturing spatial interactions during urban change simulation is of great significance to enhance the effectiveness of dynamic urban modeling and improve simulation accuracy. Addressing the inadequacies of curren... ver más

 
Mohammed Suleiman Mohammed Rudwan and Jean Vincent Fonou-Dombeu    
Ontology merging is an important task in ontology engineering to date. However, despite the efforts devoted to ontology merging, the incorporation of relevant features of ontologies such as axioms, individuals and annotations in the output ontologies rem... ver más

 
Faizi Fifita, Jordan Smith, Melissa B. Hanzsek-Brill, Xiaoyin Li and Mengshi Zhou    
The spread of fake news related to COVID-19 is an infodemic that leads to a public health crisis. Therefore, detecting fake news is crucial for an effective management of the COVID-19 pandemic response. Studies have shown that machine learning models can... ver más

 
Eleni-Ioanna Koutsovili, Ourania Tzoraki, Nicolaos Theodossiou and George E. Tsekouras    
The occurrence of flash floods in urban catchments within the Mediterranean climate zone has witnessed a substantial rise due to climate change, underscoring the urgent need for early-warning systems. This paper examines the implementation of an early fl... ver más