Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Urban Science  /  Vol: 4 Par: 4 (2020)  /  Artículo
ARTÍCULO
TITULO

Finite Element Method for the Estimation of Insertion Loss of Noise Barriers: Comparison with Various Formulae (2D)

Nikolaos M. Papadakis and Georgios E. Stavroulakis    

Resumen

Noise barriers are a critical part of noise mitigation in urban and rural areas. In this study, a comparison of the insertion loss calculations of noise barriers via the Finite Element Method (FEM) and various formulae (Kurze?Anderson, ISO 9613-2/Tatge, Menounou) is presented in the case of two-dimensional acoustic radiation problems. Some of the cases explored include: receiver in the illuminated zone, in the shadow zone, in the shadow border, source in medium, long, short distance from the barrier, source and receiver near barrier, and source above the barrier. Comparisons of the results indicate that FEM results comply well (less than 1 dB in each case) with Menounou?s formula which in turn complies with the analytic solution (MacDonald Solution). In certain cases, the differences between FEM and Menounou?s formula compared to Kurze?Anderson and ISO 9613-2/Tatge formulae are substantial (source and receiver near the barrier (10 dB) and source near the barrier and receiver in the shadow border (5 dB)). Similar differences are also confirmed by the analytic solution. The findings suggest that FEM can be applied effectively for the precise estimation of the insertion loss of noise barriers. Especially in cases where ISO 9613-2 formula shows large deviations from the analytic solution (e.g., near barrier), possible applications may arise in cases such as balconies, facades, etc. Furthermore, the study supports the idea that FEM could possibly be effectively utilized in real life applications for microscale urban acoustic modeling as a viable alternative to expensive noise prediction software.

 Artículos similares

       
 
Kunda Chamatete and Çaglar Yalçinkaya    
Three-dimensional concrete printing (3DCP) is of great interest to scientists and the construction industry to bring automation to structural engineering applications. However, studies on the thermal performance of three-dimensional printed concrete (3DP... ver más
Revista: Buildings

 
Baogui Zhou, Huabin Zhong, Kaipeng Yang, Xueqiang Yang, Chifeng Cai, Jie Xiao, Yongjian Liu and Bingxiang Yuan    
Based on a real engineering case, this study employs the MIDAS finite element software to model the reinforced high embankment slope using anti-sliding piles. The accuracy of the finite element method is verified by comparing calculated outcomes with fie... ver más
Revista: Buildings

 
Kai Li, Quan Liu, Yuan Tian, Cong Du and Zhixiang Xu    
Asphalt mixtures exhibit complex mechanical behaviors due to their multiphase internal structures. To provide better characterizations of asphalt pavements under various forms of potential distress, a two-dimensional (2D) finite element simulation based ... ver más
Revista: Buildings

 
Fang Dong, Zhongqi Shi, Rumian Zhong and Nan Jin    
In this paper, A high-order response surface method is proposed for finite element model updating of continuous beam bridges. Firstly, based on visual inspection and environmental vibration testing, the peak picking (PP) method and random subspace identi... ver más
Revista: Buildings

 
Sipho G. Thango, Georgios A. Drosopoulos, Siphesihle M. Motsa and Georgios E. Stavroulakis    
A methodology to predict key aspects of the structural response of masonry walls under blast loading using artificial neural networks (ANN) is presented in this paper. The failure patterns of masonry walls due to in and out-of-plane loading are complex d... ver más
Revista: Infrastructures