Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Applied Sciences  /  Vol: 10 Par: 23 (2020)  /  Artículo
ARTÍCULO
TITULO

A Deep Learning Approach with Feature Derivation and Selection for Overdue Repayment Forecasting

Bin Liu    
Zhexi Zhang    
Junchi Yan    
Ning Zhang    
Hongyuan Zha    
Guofu Li    
Yanting Li and Quan Yu    

Resumen

Risk control has always been a major challenge in finance. Overdue repayment is a frequently encountered discreditable behavior in online lending. Motivated by the powerful capabilities of deep neural networks, we propose a fusion deep learning approach, namely AD-MBLSTM, based on the deep neural network (DNN), multi-layer bi-directional long short-term memory (LSTM) (BiLSTM) and the attention mechanism for overdue repayment behavior forecasting according to historical repayment records. Furthermore, we present a novel feature derivation and selection method for the procedure of data preprocessing. Visualization and interpretability improvement work is also implemented to explore the critical time points and causes of overdue repayment behavior. In addition, we present a new dataset originating from a practical application scenario in online lending. We evaluate our proposed framework on the dataset and compare the performance with various general machine learning models and neural network models. Comparison results and the ablation study demonstrate that our proposed model outperforms many effective general machine learning models by a large margin, and each indispensable sub-component takes an active role.

 Artículos similares

       
 
Ryota Higashimoto, Soh Yoshida and Mitsuji Muneyasu    
This paper addresses the performance degradation of deep neural networks caused by learning with noisy labels. Recent research on this topic has exploited the memorization effect: networks fit data with clean labels during the early stages of learning an... ver más
Revista: Applied Sciences

 
Giorgio Lazzarinetti, Riccardo Dondi, Sara Manzoni and Italo Zoppis    
Solving combinatorial problems on complex networks represents a primary issue which, on a large scale, requires the use of heuristics and approximate algorithms. Recently, neural methods have been proposed in this context to find feasible solutions for r... ver más
Revista: Algorithms

 
Luis M. de Campos, Juan M. Fernández-Luna, Juan F. Huete, Francisco J. Ribadas-Pena and Néstor Bolaños    
In the context of academic expert finding, this paper investigates and compares the performance of information retrieval (IR) and machine learning (ML) methods, including deep learning, to approach the problem of identifying academic figures who are expe... ver más
Revista: Algorithms

 
Xie Lian, Xiaolong Hu, Liangsheng Shi, Jinhua Shao, Jiang Bian and Yuanlai Cui    
The parameters of the GR4J-CemaNeige coupling model (GR4neige) are typically treated as constants. However, the maximum capacity of the production store (parX1) exhibits time-varying characteristics due to climate variability and vegetation coverage chan... ver más
Revista: Water

 
Yongen Lin, Dagang Wang, Tao Jiang and Aiqing Kang    
Reliable streamflow forecasting is a determining factor for water resource planning and flood control. To better understand the strengths and weaknesses of newly proposed methods in streamflow forecasting and facilitate comparisons of different research ... ver más
Revista: Water