Redirigiendo al acceso original de articulo en 23 segundos...
ARTÍCULO
TITULO

Machine Learning Reveals a Significant Shift in Water Regime Types Due to Projected Climate Change

Georgy Ayzel    

Resumen

A water regime type is a cumulative representation of seasonal runoff variability in a textual, qualitative, or quantitative form developed for a particular period. The assessment of the respective water regime type changes is of high importance for local communities and water management authorities, increasing their awareness and opening strategies for adaptation. In the presented study, we trained a machine learning model?the Random Forest classifier?to predict water regime types in northwest Russia based on monthly climatological hydrographs derived for a historical period (1979?1991). Evaluation results show the high efficiency of the trained model with an accuracy of 91.6%. Then, the Random Forest model was used to predict water regime types based on runoff projections for the end of the 21st century (2087?2099) forced by four different General Circulation Models (GCM) and three Representative Concentration Pathway scenarios (RCP). Results indicate that climate is expected to modify water regime types remarkably. There are two primary directions of projected changes. First, we detect the tendency towards less stable summer and winter flows. The second direction is towards a shift in spring flood characteristics. While spring flooding is expected to remain the dominant phase of the water regime, the flood peak is expected to shift towards earlier occurrence and lower magnitude. We identified that the projected changes in water regime types are more pronounced in more aggressive RCP scenarios.

 Artículos similares

       
 
Zhenzhen Di, Miao Chang, Peikun Guo, Yang Li and Yin Chang    
Most worldwide industrial wastewater, including in China, is still directly discharged to aquatic environments without adequate treatment. Because of a lack of data and few methods, the relationships between pollutants discharged in wastewater and those ... ver más
Revista: Water

 
Ognjen Radovic,Srdan Marinkovic,Jelena Radojicic    
Credit scoring attracts special attention of financial institutions. In recent years, deep learning methods have been particularly interesting. In this paper, we compare the performance of ensemble deep learning methods based on decision trees with the b... ver más

 
Pablo de Llano, Carlos Piñeiro, Manuel Rodríguez     Pág. pp. 163 - 198
This paper offers a comparative analysis of the effectiveness of eight popular forecasting methods: univariate, linear, discriminate and logit regression; recursive partitioning, rough sets, artificial neural networks, and DEA. Our goals are: clarify the... ver más

 
Hugo López-Fernández     Pág. 22 - 25
Mass spectrometry using matrix assisted laser desorption ionization coupled to time of flight analyzers (MALDI-TOF MS) has become popular during the last decade due to its high speed, sensitivity and robustness for detecting proteins and peptides. This a... ver más

 
Rejath Jose, Faiz Syed, Anvin Thomas and Milan Toma    
The advancement of machine learning in healthcare offers significant potential for enhancing disease prediction and management. This study harnesses the PyCaret library?a Python-based machine learning toolkit?to construct and refine predictive models for... ver más
Revista: Applied Sciences