Redirigiendo al acceso original de articulo en 20 segundos...
ARTÍCULO
TITULO

Wind and Wave Setup Contributions to Extreme Sea Levels at a Tropical High Island: A Stochastic Cyclone Simulation Study for Apia, Samoa

Ron Karl Hoeke    
Kathleen L. McInnes and Julian G. O?Grady    

Resumen

Wind-wave contributions to tropical cyclone (TC)-induced extreme sea levels are known to be significant in areas with narrow littoral zones, particularly at oceanic islands. Despite this, little information exists in many of these locations to assess the likelihood of inundation, the relative contribution of wind and wave setup to this inundation, and how it may change with sea level rise (SLR), particularly at scales relevant to coastal infrastructure. In this study, we explore TC-induced extreme sea levels at spatial scales on the order of tens of meters at Apia, the capitol of Samoa, a nation in the tropical South Pacific with typical high-island fringing reef morphology. Ensembles of stochastically generated TCs (based on historical information) are combined with numerical simulations of wind waves, storm-surge, and wave setup to develop high-resolution statistical information on extreme sea levels and local contributions of wind setup and wave setup. The results indicate that storm track and local morphological details lead to local differences in extreme sea levels on the order of 1 m at spatial scales of less than 1 km. Wave setup is the overall largest contributor at most locations; however, wind setup may exceed wave setup in some sheltered bays. When an arbitrary SLR scenario (+1 m) is introduced, overall extreme sea levels are found to modestly decrease relative to SLR, but wave energy near the shoreline greatly increases, consistent with a number of other recent studies. These differences have implications for coastal adaptation strategies.

Palabras claves

 Artículos similares

       
 
Huimin Li and Yijun He    
Spaceborne synthetic aperture radar (SAR) has been widely acknowledged for its advantages in collecting ocean surface measurements under all weather conditions during day and night. Despite the strongly nonlinear imaging process, SAR measurements of ocea... ver más

 
Dong-Ju Kim, Young-Suk You and Min-Young Sun    
Offshore wind turbines (OWTs) are exposed to cyclic loads resulting from wind, waves, and rotor rotation. These loads can induce resonance, thereby significantly increasing the amplitude of the structure and accelerating the accumulation of fatigue damag... ver más

 
Mingsheng Chen, Lenan Yang, Xinghan Sun, Jin Pan, Kai Zhang, Lin Lin, Qihao Yun and Ziwen Chen    
Evidence points to increasing the development of floating wind turbines to unlock the full potential of worldwide wind-energy generation. Barge-type floating wind turbines are of interest because of their shallow draft, structural simplicity, and moonpoo... ver más

 
Fuyin Cui, Shuling Chen, Hongbin Hao, Changzhi Han, Ruidong Ni and Yueyue Zhuo    
To address the unstable motion of a tension leg platform (TLP) for floating wind turbines in various sea conditions, an improved method of incorporating a tuned liquid multi-column damper (TLMCD) into the TLP foundation is proposed. In order to evaluate ... ver más

 
Chinh Lieou, Serge Jolicoeur, Thomas Guyondet, Stéphane O?Carroll and Tri Nguyen-Quang    
This study examines the hydrodynamic regimes in Shediac Bay, located in New Brunswick, Canada, with a focus on the breach in the Grande-Digue sand spit. The breach, which was developed in the mid-1980s, has raised concerns about its potential impacts on ... ver más