Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Drones  /  Vol: 6 Par: 9 (2022)  /  Artículo
ARTÍCULO
TITULO

Deep Reinforcement Learning with Corrective Feedback for Autonomous UAV Landing on a Mobile Platform

Lizhen Wu    
Chang Wang    
Pengpeng Zhang and Changyun Wei    

Resumen

Autonomous Unmanned Aerial Vehicle (UAV) landing remains a challenge in uncertain environments, e.g., landing on a mobile ground platform such as an Unmanned Ground Vehicle (UGV) without knowing its motion dynamics. A traditional PID (Proportional, Integral, Derivative) controller is a choice for the UAV landing task, but it suffers the problem of manual parameter tuning, which becomes intractable if the initial landing condition changes or the mobile platform keeps moving. In this paper, we design a novel learning-based controller that integrates a standard PID module with a deep reinforcement learning module, which can automatically optimize the PID parameters for velocity control. In addition, corrective feedback based on heuristics of parameter tuning can speed up the learning process compared with traditional DRL algorithms that are typically time-consuming. In addition, the learned policy makes the UAV landing smooth and fast by allowing the UAV to adjust its speed adaptively according to the dynamics of the environment. We demonstrate the effectiveness of the proposed algorithm in a variety of quadrotor UAV landing tasks with both static and dynamic environmental settings.

 Artículos similares

       
 
Tamim Mahmud Al-Hasan, Aya Nabil Sayed, Faycal Bensaali, Yassine Himeur, Iraklis Varlamis and George Dimitrakopoulos    
Recommender systems are a key technology for many applications, such as e-commerce, streaming media, and social media. Traditional recommender systems rely on collaborative filtering or content-based filtering to make recommendations. However, these appr... ver más

 
Tongyang Xu, Yuan Liu, Zhaotai Ma, Yiqiang Huang and Peng Liu    
As a new distributed machine learning (ML) approach, federated learning (FL) shows great potential to preserve data privacy by enabling distributed data owners to collaboratively build a global model without sharing their raw data. However, the heterogen... ver más
Revista: Future Internet

 
Zuopeng Li, Hengshuai Ju and Zepeng Ren    
The existing research on dependent task offloading and resource allocation assumes that edge servers can provide computational and communication resources free of charge. This paper proposes a two-stage resource allocation method to address this issue. I... ver más
Revista: Future Internet

 
Qianqian Wu, Qiang Liu, Zefan Wu and Jiye Zhang    
In the field of ocean data monitoring, collaborative control and path planning of unmanned aerial vehicles (UAVs) are essential for improving data collection efficiency and quality. In this study, we focus on how to utilize multiple UAVs to efficiently c... ver más
Revista: Future Internet

 
Jiacheng Hou, Tianhao Tao, Haoye Lu and Amiya Nayak    
Information-centric networking (ICN) has gained significant attention due to its in-network caching and named-based routing capabilities. Caching plays a crucial role in managing the increasing network traffic and improving the content delivery efficienc... ver más
Revista: Future Internet