Resumen
As sensors are distributed among wireless sensor networks (WSNs), ensuring that the batteries and processing power last for a long time, to improve energy consumption and extend the lifetime of the WSN, is a significant challenge in the design of network clustering techniques. The sensor nodes are divided in these techniques into clusters with different cluster heads (CHs). Recently, certain considerations such as less energy consumption and high reliability have become necessary for selecting the optimal CH nodes in clustering-based metaheuristic techniques. This paper introduces a novel enhancement algorithm using Aquila Optimizer (AO), which enhances the energy balancing in clusters across sensor nodes during network communications to extend the network lifetime and reduce power consumption. Lifetime and energy-efficiency clustering algorithms, namely the low-energy adaptive clustering hierarchy (LEACH) protocol as a traditional protocol, genetic algorithm (GA), Coyote Optimization Algorithm (COY), Aquila Optimizer (AO), and Harris Hawks Optimization (HHO), are evaluated in a wireless sensor network. The paper concludes that the proposed AO algorithm outperforms other algorithms in terms of alive nodes analysis and energy consumption.