Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Water  /  Vol: 15 Par: 11 (2023)  /  Artículo
ARTÍCULO
TITULO

Effects of Climate Change on Surface Runoff and Soil Moisture in the Source Region of the Yellow River

Jianhua Si    
Jianming Li    
Sujin Lu    
Xuejiao Qi    
Xiuzhi Zhang    
Wenjin Bao    
Xiaoyan Zhang    
Shipeng Zhou    
Cheng Jin    
Lijuan Qi    
Yue Qi    
Xiaojing Zheng    
Yanhong Gong and Zhanqing Wang    

Resumen

The impact of climate change on surface runoff and soil moisture in the source region of the Yellow River is analyzed, which will provide a scientific basis for the rational use and protection of water resources in the source area. In this paper, the SWAT hydrological model was coupled with the Coupled Model Intercomparison Project (CMIP) to predict future changes in surface runoff and soil moisture in the source region of the Yellow River. The prediction of surface runoff and soil moisture in the Yellow River Basin was analyzed by a linear regression model. The SWAT model rate had a calibration period R2 of 0.876 and a validation period R2 of 0.972. The trend of surface runoff and annual mean temperature in the source region of the Yellow River from 2011 to 2022 showed an overall increasing trend, and soil moisture showed a general decreasing trend. 2011?2022 trends between surface runoff and annual mean temperature in the source region of the Yellow River showed a highly significant difference, indicating that surface runoff flow was significantly influenced by temperature. The difference between the trends in soil moisture and the annual mean temperature was highly significant. The surface runoff fluctuated greatly in different years, and the surface runoff changed greatly in different scenarios of CMIP5 (RCP2.6, RCP4.5, and RCP8.5). For all three climate change scenarios, the surface runoff displayed a downward trend. The surface runoff showed a similar uneven distribution for all scenarios on a yearly cycle. Under the three climate scenarios, the runoff was highest between May and August, with a slowly increasing trend from January to April and a slightly decreasing trend from September to December. The interannual and interannual distribution of soil water was basically consistent with the distribution of surface runoff, and there was an overall trend in the length of all soil water reduction scenarios. Surface runoff and soil moisture are and will be greatly affected by climate change (mainly temperature and precipitation). Under the three climate scenarios, the precipitation increases to some extent, but the surface runoff and soil moisture will both decrease, which may be attributed to the greater evaporation than the precipitation.

 Artículos similares

       
 
Jaehyun Shin and Dong Sop Rhee    
As the frequency and intensity of natural and social disasters increase due to climate change, damage caused by disasters affects urban areas and facilities. Of those disasters, inundation occurs in urban areas due to rising water surface elevation becau... ver más
Revista: Applied Sciences

 
Gerardo Colín-García, Enrique Palacios-Vélez, Adolfo López-Pérez, Martín Alejandro Bolaños-González, Héctor Flores-Magdaleno, Roberto Ascencio-Hernández and Enrique Inoscencio Canales-Islas    
Assessing the impact of climate change is essential for developing water resource management plans, especially in areas facing severe issues regarding ecosystem service degradation. This study assessed the effects of climate change on the hydrological ba... ver más
Revista: Hydrology

 
Yan Zhang, Bingfei Chu, Tianming Huang, Shengwen Qi, Michael Manga, Huai Zhang, Bowen Zheng and Yuxin Zhou    
Carbon geological storage (CGS) is an important global practice implemented to mitigate the effects of CO2 emissions on temperature, climate, sea level, and biodiversity. The monitoring of CGS leakage and the impact of storage on hydrogeological properti... ver más
Revista: Water

 
Peiyue Li and Jianhua Wu    
This editorial introduces the Special Issue titled ?Water Resources and Sustainable Development,? underscoring the critical need for sustainable management of water resources in light of increasing demand, climate change impacts, and pollution. The issue... ver más
Revista: Water

 
Dayana Carolina Chalá, Edgar Quiñones-Bolaños and Mehrab Mehrvar    
Land subsidence is a global challenge that enhances the vulnerability of aquifers where climate change and driving forces are occurring simultaneously. To comprehensively analyze this issue, integrated modeling tools are essential. This study advances th... ver más
Revista: Water