Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Water  /  Vol: 8 Par: 5 (2016)  /  Artículo
ARTÍCULO
TITULO

Drivers of Barotropic and Baroclinic Exchange through an Estuarine Navigation Channel in the Mississippi River Delta Plain

Gregg A. Snedden    

Resumen

Estuarine navigation channels have long been recognized as conduits for saltwater intrusion into coastal wetlands. Salt flux decomposition and time series measurements of velocity and salinity were used to examine salt flux components and drivers of baroclinic and barotropic exchange in the Houma Navigation Channel, an estuarine channel located in the Mississippi River delta plain that receives substantial freshwater inputs from the Mississippi-Atchafalaya River system at its inland extent. Two modes of vertical current structure were identified from the time series data. The first mode, accounting for 90% of the total flow field variability, strongly resembled a barotropic current structure and was coherent with alongshelf wind stress over the coastal Gulf of Mexico. The second mode was indicative of gravitational circulation and was linked to variability in tidal stirring and the horizontal salinity gradient along the channel?s length. Tidal oscillatory salt flux was more important than gravitational circulation in transporting salt upestuary, except over equatorial phases of the fortnightly tidal cycle during times when river inflows were minimal. During all tidal cycles sampled, the advective flux, driven by a combination of freshwater discharge and wind-driven changes in storage, was the dominant transport term, and net flux of salt was always out of the estuary. These findings indicate that although human-made channels can effectively facilitate inland intrusion of saline water, this intrusion can be minimized or even reversed when they are subject to significant freshwater inputs.

 Artículos similares

       
 
Junjie Pan, Xin Lin, Zezhong Wang, Ruoyan Wang, Kun Wu, Jinhu Liang and Xilong Yu    
This study investigated combustion characteristics of composite fuel grains designed based on a modular fuel unit strategy. The modular fuel unit comprised a periodical helical structure with nine acrylonitrile?butadiene?styrene helical blades. A paraffi... ver más
Revista: Aerospace

 
Yang Lu, Xiaochun Wang, Yijun He, Jiping Liu, Jiangbo Jin, Jian Cao, Juanxiong He, Yongqiang Yu, Xin Gao, Mirong Song and Yiming Zhang    
Two coupled climate models that participated in the CMIP6 project (Coupled Model Intercomparison Project Phase 6), the Earth System Model of Chinese Academy of Sciences version 2 (CAS-ESM2-0), and the Nanjing University of Information Science and Technol... ver más

 
Chengcheng Peng, Hengfei Li, Nan Yang and Mingzhi Lu    
Peatlands store large amounts of carbon in wetland ecosystems. The hydrological conditions within peatlands are important factors that affect the biochemical cycle and patterns of greenhouse gas emissions in these peatlands. This study was carried out in... ver más
Revista: Water

 
Jungho Lee, Ingyu Lee, Seongphil Woo, Yeoungmin Han and Youngbin Yoon    
The spray and combustion characteristics of a gas-centered swirl coaxial (GCSC) injector used in oxidizer-rich staged combustion cycle engines were analyzed. The study focused on varying the recess ratio, presence of gas swirl, and swirl direction to imp... ver más
Revista: Aerospace

 
Xin Wei, Xiaojuan Shi, Honghu Ji and Jinlong Hu    
In order to study the infrared radiation characteristics of an air-breathing hypersonic vehicle powered by a scramjet, it is necessary to solve the internal and external flow field of the air-breathing hypersonic vehicle. Owing to the complexity and diff... ver más
Revista: Aerospace