Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Applied Sciences  /  Vol: 10 Par: 20 (2020)  /  Artículo
ARTÍCULO
TITULO

A Comparative Study of Random Forest and Genetic Engineering Programming for the Prediction of Compressive Strength of High Strength Concrete (HSC)

Furqan Farooq    
Muhammad Nasir Amin    
Kaffayatullah Khan    
Muhammad Rehan Sadiq    
Muhammad Faisal Javed    
Fahid Aslam and Rayed Alyousef    

Resumen

Supervised machine learning and its algorithm is an emerging trend for the prediction of mechanical properties of concrete. This study uses an ensemble random forest (RF) and gene expression programming (GEP) algorithm for the compressive strength prediction of high strength concrete. The parameters include cement content, coarse aggregate to fine aggregate ratio, water, and superplasticizer. Moreover, statistical analyses like MAE, RSE, and RRMSE are used to evaluate the performance of models. The RF ensemble model outbursts in performance as it uses a weak base learner decision tree and gives an adamant determination of coefficient R2 = 0.96 with fewer errors. The GEP algorithm depicts a good response in between actual values and prediction values with an empirical relation. An external statistical check is also applied on RF and GEP models to validate the variables with data points. Artificial neural networks (ANNs) and decision tree (DT) are also used on a given data sample and comparison is made with the aforementioned models. Permutation features using python are done on the variables to give an influential parameter. The machine learning algorithm reveals a strong correlation between targets and predicts with less statistical measures showing the accuracy of the entire model.

 Artículos similares

       
 
SASIKUMAR P     Pág. 694 - 706

 
Yuguo Liu, Kai Xia, Botong Wang, Ji Le, Yanqing Ma and Mingli Zhang    
Rapid advancements in construction technologies have accelerated the development of complex and deep underground structures, raising concerns about the impact of groundwater on structures, particularly anti-floating measures. Traditional tensioned anchor... ver más
Revista: Applied Sciences

 
Jeong-Hwa Park, Kyu-Hwan Oh, Sang-Keun Oh, Hyun-Jae Seo and Boo-Sung Kang    
In the field of waterproofing concrete structures, the use of self-adhesive waterproofing sheets has become a popular technique for ensuring long-term waterproofing performance. One important characteristic of such sheet materials is maintaining their st... ver más
Revista: Applied Sciences

 
Chao Wang, Jianhui Xu, Yuefeng Li, Tuanhui Wang and Qiwei Wang    
Rockbursts are serious threats to the safe production of mining, resulting in great casualties and property losses. The accurate prediction of rockburst is an important premise that influences the safety and health of miners. As a classical machine learn... ver más
Revista: Applied Sciences

 
Rongjin Li, Weishi Bai, Rongjian Li and Jinshuo Jiang    
The development of an effective evaluation method suitable for loess-tunnel excavation is necessary to avoid the collapse accidents caused by tunnel excavation and any secondary disasters. Although the Fenner formulas and the modified Fenner formulas are... ver más
Revista: Applied Sciences