Resumen
While the effects of sound pressures in water have been studied extensively, very much less work has been done on seabed vibrations. Our previous work used finite element modeling to interpret the results of field trials, studying propagation through graded seabeds as excited by impulsive energy applied to a point. A new simulation has successfully replicated further features of the original observations, and more field work has addressed other questions. We have concentrated on the water-particle motion near the seabed, as this is well known to be critical for benthic species. The evanescent pressure sound fields set up as the impulsive vibration energy passes are expected to be important for the local species, such as crabs and flatfish. By comparison with effects occurring away from boundaries, these seismic interface waves create vigorous water-particle motion but proportionately less sound pressure. This comparative increase ratio exceeds 12 for unconsolidated sediment areas, as typically used for piling operations.