Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Water  /  Vol: 12 Par: 4 (2020)  /  Artículo
ARTÍCULO
TITULO

An Evaluation Study of the Fully Coupled WRF/WRF-Hydro Modeling System for Simulation of Storm Events with Different Rainfall Evenness in Space and Time

Wei Wang    
Jia Liu    
Chuanzhe Li    
Yuchen Liu    
Fuliang Yu and Entao Yu    

Resumen

With the aim of improving the understanding of water exchanges in medium-scale catchments of northern China, the spatiotemporal characteristics of rainfall and several key water cycle elements e.g., soil moisture, evapotranspiration and generated runoff, were investigated using a fully coupled atmospheric-hydrologic modeling system by integrating the Weather Research and Forecasting model (WRF) and its terrestrial hydrologic component WRF-Hydro (referred to as the fully coupled WRF/WRF-Hydro). The stand-alone WRF model (referred to as WRF-only) is also used as a comparison with the fully coupled system, which was expected to produce more realistic simulations, especially rainfall, by allowing the redistribution of surface and subsurface water across the land surface. Six storm events were sorted by different spatial and temporal distribution types, and categorical and continuous indices were used to distinguish the applicability in space and time between WRF-only and the fully coupled WRF/WRF-Hydro. The temporal indices showed that the coupled WRF-Hydro could improve the time homogeneous precipitation, but for the time inhomogeneous precipitation, it might produce a larger false alarm than WRF-only, especially for the flash storm that occurred in July, 2012. The spatial indices showed a lower mean bias error in the coupled system, and presented an enhanced simulation of both space homogeneous and inhomogeneous storm events than WRF-only. In comparison with WRF-only, the fully coupled WRF/WRF-Hydro had a closer to the observations particularly in and around the storm centers. The redistributions fluctuation of spatial precipitation in the fully coupled system was highly correlated with soil moisture, and a low initial soil moisture could lead to a large spatial fluctuated range. Generally, the fully coupled system produced slightly less runoff than WRF-only, but more frequent infiltration and larger soil moisture. While terrestrial hydrologic elements differed with relatively small amounts in the average of the two catchments between WRF-only and the fully coupled WRF/WRF-Hydro, the spatial distribution of elements in the water cycle before and after coupling with WRF-Hydro was not consistent. The soil moisture, runoff and precipitation in the fully coupled system had a similar spatial trend, but evapotranspiration did not always display the same.

 Artículos similares

       
 
Young Hwan Choi and Joong Hoon Kim    
This study compares the performance of self-adaptive optimization approaches in efficient water distribution systems (WDS) design and presents a guide for the selection of the appropriate method employing optimization utilizing the characteristic of each... ver más
Revista: Water

 
Mngereza Miraji, Jie Liu and Chunmiao Zheng    
River basins around the world face similar issues of water scarcity, deficient infrastructure, and great disparities in water availability between sub-regions, both within and between countries. In this study, different strategies under the Water Evaluat... ver más
Revista: Water

 
Zhenzhen Di, Miao Chang, Peikun Guo, Yang Li and Yin Chang    
Most worldwide industrial wastewater, including in China, is still directly discharged to aquatic environments without adequate treatment. Because of a lack of data and few methods, the relationships between pollutants discharged in wastewater and those ... ver más
Revista: Water

 
Tianlong Jia, Hui Qin, Dong Yan, Zhendong Zhang, Bin Liu, Chaoshun Li, Jinwen Wang and Jianzhong Zhou    
Traditional reservoir operation mainly focuses on economic benefits, while ignoring the impacts on navigation. Thus, the economic operation of reservoirs considering navigational demands is of great significance for improving benefits. A navigation capac... ver más
Revista: Water

 
Shu Wu, Momcilo Markus, David Lorenz, James R. Angel and Kevin Grady    
Many studies have projected that as the climate changes, the magnitudes of extreme precipitation events in the Northeastern United States are likely to continue increasing, regardless of the emission scenario. To examine this issue, we analyzed observed ... ver más
Revista: Water