Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  Applied Sciences  /  Vol: 13 Par: 17 (2023)  /  Artículo
ARTÍCULO
TITULO

Parameter Calibration and System Design of Material Lifting System for Inclined Shaft Construction

Shuxun Qiao    
Zhongwen Peng    
Jinkai Zhang and Lianghai Jin    

Resumen

As a key transportation equipment in the construction of long tunnels with large slope, the material hoisting system plays an important role in the transportation of materials in sloping shafts. This paper proposes a parameterized calibration scheme for the hoisting system based on the structure and working principle of the hoisting system, taking the wire rope, hoist, motor and overhead wheel as the research objects, and according to the relevant industry specifications and numerical calculation methods. Based on the structural design and functional analysis of the hoisting system, a reasonable control system, monitoring system and safety protection devices are designed, and the calibration scheme and the designed system are introduced into the Dianzhong water diversion project for verification. The parameters of each component of the hoisting system were calculated as follows: maximum breaking tension value of wire rope 490.29 KN, drum diameter 2000 mm, motor hoisting power 213.7 KW, and the system design was as follows: control system selects frequency conversion electric control method, safety protection device selects ZDC30-2.5 anti-running device. The results show that: the hoisting system components structure parameters meet the specification requirements?safety protection devices can effectively prevent the occurrence of sports car slippage and man-car jumping rail overturning accident?to meet the requirements of the construction period transport capacity and transport safety. The relevant experience can provide the basis for the design of a material hoisting system for a similar inclined shaft construction.

 Artículos similares

       
 
Gokhan Gungor and Mehdi Afshari    
In this study, a sensorimotor controller is designed to characterize the required muscle force to enable a robotics system to perform a human-like circular movement. When the appropriate muscle internal forces are chosen, the arm end-point tracks the des... ver más
Revista: Applied Sciences

 
Paul Christoph Gembarski and Pauline Gast    
Configuring complex computer-aided design (CAD) assemblies just by modifying parameters requires the attention and abstraction of the users. This interaction cost can be lowered significantly by graphical interactive control elements that allow for drag ... ver más
Revista: Applied Sciences

 
Qi Hong, Tianyi Zhou and Junde Qi    
Polishing force is one of the key process parameters in the polishing process of blisk blades, and its control accuracy will affect the surface quality and processing accuracy of the workpiece. The contact mechanism between the polishing surface and flap... ver más
Revista: Applied Sciences

 
Bangchu Zhang, Yiyong Liang, Shuitao Rao, Yu Kuang and Weiyu Zhu    
In hypersonic flight control, characterized by challenges posed by input saturation, model parameter uncertainties, and external disturbances, this paper introduces a pioneering anti-input saturation control method based on RBFNN adaptivity. We have deve... ver más
Revista: Aerospace

 
Fatih Ozaydin, Ramita Sarkar, Veysel Bayrakci, Cihan Bayindir, Azmi Ali Altintas and Özgür E. Müstecaplioglu    
Decoherence is a major issue in quantum information processing, degrading the performance of tasks or even precluding them. Quantum error-correcting codes, creating decoherence-free subspaces, and the quantum Zeno effect are among the major means for pro... ver más
Revista: Information