Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Applied Sciences  /  Vol: 9 Par: 22 (2019)  /  Artículo
ARTÍCULO
TITULO

Power Quality Disturbance Recognition Using VMD-Based Feature Extraction and Heuristic Feature Selection

Lei Fu    
Tiantian Zhu    
Guobing Pan    
Sihan Chen    
Qi Zhong and Yanding Wei    

Resumen

Power quality disturbances (PQDs) have a large negative impact on electric power systems with the increasing use of sensitive electrical loads. This paper presents a novel hybrid algorithm for PQD detection and classification. The proposed method is constructed while using the following main steps: computer simulation of PQD signals, signal decomposition, feature extraction, heuristic selection of feature selection, and classification. First, different types of PQD signals are generated by computer simulation. Second, variational mode decomposition (VMD) is used to decompose the signals into several instinct mode functions (IMFs). Third, the statistical features are calculated in the time series for each IMF. Next, a two-stage feature selection method is imported to eliminate the redundant features by utilizing permutation entropy and the Fisher score algorithm. Finally, the selected feature vectors are fed into a multiclass support vector machine (SVM) model to classify the PQDs. Several experimental investigations are performed to verify the performance and effectiveness of the proposed method in a noisy environment. Moreover, the results demonstrate that the start and end points of the PQD can be efficiently detected.

 Artículos similares

       
 
Danilo Pau, Andrea Pisani and Antonio Candelieri    
In the context of TinyML, many research efforts have been devoted to designing forward topologies to support On-Device Learning. Reaching this target would bring numerous advantages, including reductions in latency and computational complexity, stronger ... ver más
Revista: Algorithms

 
Ping Huang and Yafeng Wu    
Airborne speech enhancement is always a major challenge for the security of airborne systems. Recently, multi-objective learning technology has become one of the mainstream methods of monaural speech enhancement. In this paper, we propose a novel multi-o... ver más
Revista: Aerospace

 
Weijian Huang, Qi Song and Yuan Huang    
Short-term power load forecasting is of great significance for the reliable and safe operation of power systems. In order to improve the accuracy of short-term load forecasting, for the problems of random fluctuation in load and the complexity of load-in... ver más
Revista: Applied Sciences

 
Zhiwei Lin, Weihao Chen, Lumei Su, Yuhan Chen and Tianyou Li    
Object detection methods are commonly employed in power safety monitoring systems to detect violations in surveillance scenes. However, traditional object detection methods are ineffective for small objects that are similar to the background information ... ver más
Revista: Applied Sciences

 
Qingliang Xiong, Mingping Liu, Yuqin Li, Chaodan Zheng and Suhui Deng    
Due to difficulties with electric energy storage, balancing the supply and demand of the power grid is crucial for the stable operation of power systems. Short-term load forecasting can provide an early warning of excessive power consumption for utilitie... ver más
Revista: Applied Sciences