Resumen
In civil, geotechnical, and mining engineering, the investigation of the holes? effect on dynamic crack propagation is essential because it can be used to predict possible fracture and protect cracked structures being further damaged. In this paper, a specimen made from polymethyl methacrylate (PMMA) with a pre-crack and two holes was proposed, and the Split-Hopkinson pressure bar was employed to investigate the effect of holes on dynamic crack propagation under impact loading. Notably, the locations of the holes were well designed with different two-hole spacing (12 mm, 16 mm, and 20 mm) and crack-hole distance (15 mm, 30 mm, and 45 mm). Crack propagation gauges were applied to monitor the fracturing time and crack extending velocity. The interaction characteristic between the crack and two holes was studied numerically using the AUTODYN code. In the numerical models, the failure criteria of maximum tensile stress and softening damage were employed for brittle material. The crack path, the propagating velocity, the particle velocity vector, and the stress state between the holes were analyzed. The calculation results indicate that compressive stresses between the two holes induced by the deformation of the holes play a crucial role in confining the vertical crack propagation. Both experimental and numerical results demonstrate that the holes have a suppressing action on the moving crack; as the two-hole spacing decreases, the suppressing action intensifies.