Redirigiendo al acceso original de articulo en 24 segundos...
ARTÍCULO
TITULO

Mining Temporal Patterns to Discover Inter-Appliance Associations Using Smart Meter Data

Sarah Osama    
Marco Alfonse and Abdel-Badeeh M. Salem    

Resumen

With the emergence of the smart grid environment, smart meters are considered one of the main key enablers for developing energy management solutions in residential home premises. Power consumption in the residential sector is affected by the behavior of home residents through using their home appliances. Respecting such behavior and preferences is essential for developing demand response programs. The main contribution of this paper is to discover the association between appliances? usage through mining temporal association rules in addition to applying the temporal clustering technique for grouping appliances with similar usage at a particular time. The proposed method is applied on a time-series dataset, which is the United Kingdom Domestic Appliance-Level Electricity (UK-DALE), and the results that are achieved discovered appliance?appliance associations that have similar usage patterns with respect to the 24 h of the day.

 Artículos similares

       
 
Yong Yu, Shudong Chen, Rong Du, Da Tong, Hao Xu and Shuai Chen    
Temporal knowledge graphs play an increasingly prominent role in scenarios such as social networks, finance, and smart cities. As such, research on temporal knowledge graphs continues to deepen. In particular, research on temporal knowledge graph reasoni... ver más
Revista: Future Internet

 
Zheren Liu, Chaogui Kang and Xiaoyue Xing    
Similar time series search is one of the most important time series mining tasks in our daily life. As recent advances in sensor technologies accumulate abundant multi-dimensional time series data associated with multivariate quantities, it becomes a pri... ver más

 
Eric Hsueh-Chan Lu and You-Ru Lin    
With the rise in the Internet of Things (IOT), mobile devices and Location-Based Social Network (LBSN), abundant trajectory data have made research on location prediction more popular. The check-in data shared through LBSN hide information related to lif... ver más

 
Yuanfang Chen, Jiannan Cai and Min Deng    
The discovery of spatio-temporal co-occurrence patterns (STCPs) among multiple types of crimes whose events frequently co-occur in neighboring space and time is crucial to the joint prevention of crimes. However, the crime event occurrence time is often ... ver más

 
Bowen Yang, Zunhao Liu, Zhi Cai, Dongze Li, Xing Su, Limin Guo and Zhiming Ding    
In order to improve the effect of path planning in emergencies, the missing position imputation and velocity restoration in vehicle trajectory provide data support for emergency path planning and analysis. At present, there are many methods to fill in th... ver más