Redirigiendo al acceso original de articulo en 16 segundos...
ARTÍCULO
TITULO

Predicting Forex Currency Fluctuations Using a Novel Bio-Inspired Modular Neural Network

Christos Bormpotsis    
Mohamed Sedky and Asma Patel    

Resumen

In the realm of foreign exchange (Forex) market predictions, Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) have been commonly employed. However, these models often exhibit instability due to vulnerability to data perturbations attributed to their monolithic architecture. Hence, this study proposes a novel neuroscience-informed modular network that harnesses closing prices and sentiments from Yahoo Finance and Twitter APIs. Compared to monolithic methods, the objective is to advance the effectiveness of predicting price fluctuations in Euro to British Pound Sterling (EUR/GBP). The proposed model offers a unique methodology based on a reinvigorated modular CNN, replacing pooling layers with orthogonal kernel initialisation RNNs coupled with Monte Carlo Dropout (MCoRNNMCD). It integrates two pivotal modules: a convolutional simple RNN and a convolutional Gated Recurrent Unit (GRU). These modules incorporate orthogonal kernel initialisation and Monte Carlo Dropout techniques to mitigate overfitting, assessing each module?s uncertainty. The synthesis of these parallel feature extraction modules culminates in a three-layer Artificial Neural Network (ANN) decision-making module. Established on objective metrics like the Mean Square Error (MSE), rigorous evaluation underscores the proposed MCoRNNMCD?ANN?s exceptional performance. MCoRNNMCD?ANN surpasses single CNNs, LSTMs, GRUs, and the state-of-the-art hybrid BiCuDNNLSTM, CLSTM, CNN?LSTM, and LSTM?GRU in predicting hourly EUR/GBP closing price fluctuations.

 Artículos similares

       
 
Omar Serghini, Hayat Semlali, Asmaa Maali, Abdelilah Ghammaz and Salvatore Serrano    
Spectrum sensing is an essential function of cognitive radio technology that can enable the reuse of available radio resources by so-called secondary users without creating harmful interference with licensed users. The application of machine learning tec... ver más
Revista: Future Internet

 
Kyle DeMedeiros, Chan Young Koh and Abdeltawab Hendawi    
The Chicago Array of Things (AoT) is a robust dataset taken from over 100 nodes over four years. Each node contains over a dozen sensors. The array contains a series of Internet of Things (IoT) devices with multiple heterogeneous sensors connected to a p... ver más
Revista: Future Internet

 
Yuting Chen, Pengjun Zhao, Yi Lin, Yushi Sun, Rui Chen, Ling Yu and Yu Liu    
Precise identification of spatial unit functional features in the city is a pre-condition for urban planning and policy-making. However, inferring unknown attributes of urban spatial units from data mining of spatial interaction remains a challenge in ge... ver más

 
Laura Guimarães, António Paulo Carvalho, Pedro Ribeiro, Cláudia Teixeira, Nuno Silva, André Pereira, João Amorim and Luís Oliva-Teles    
Triops longicaudatus is a crustacean typically inhabiting temporary freshwater bodies in regions with a Mediterranean climate. These crustaceans are easily maintained in the laboratory and show a set of biological features that make them good candidates ... ver más
Revista: Water

 
Alvaro A. Teran-Quezada, Victor Lopez-Cabrera, Jose Carlos Rangel and Javier E. Sanchez-Galan    
Convolutional neural networks (CNN) have provided great advances for the task of sign language recognition (SLR). However, recurrent neural networks (RNN) in the form of long?short-term memory (LSTM) have become a means for providing solutions to problem... ver más