Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Applied Sciences  /  Vol: 12 Par: 6 (2022)  /  Artículo
ARTÍCULO
TITULO

Fully Convolutional Neural Network Prediction Method for Aerostatic Performance of Bluff Bodies Based on Consistent Shape Description

Ke Li    
Hai Li    
Shaopeng Li and Zengshun Chen    

Resumen

The shape of a bluff body section is of high importance to its aerostatic performance. Obtaining the aerostatic performance of a specific shape based on wind tunnel tests and CFD simulations takes a lot of time, which affects evaluation efficiency. This paper proposes a novel fully convolutional neural network model that enables rapid prediction from shape to aerostatic performance. Its main innovations are: (1) The proposal of a new shape description method in which the shape is described by the combination of the wall distance field and the space coordinate field, which can efficiently express the influencing factors of the shape on the aerostatic performance. (2) A step-by-step strategy in which the pressure field is used as the model output and then the calculation of the aerostatic coefficient is proposed. Compared with the simple direct prediction of the aerostatic coefficient, the logical connection between input and output can be enhanced and the prediction accuracy can be improved. It is found that the model proposed in this paper has good prediction accuracy, and its average relative error is 9.42% compared with the CFD calculation results. Compared with the direct use of the shape as the model input, the accuracy is improved by 13.25%; compared with the direct use of the drag coefficient as the model output, the accuracy is improved by 10%. Compared with traditional CFD calculations and wind tunnel experiments, this method can be used as a fast auxiliary screening method for the optimization of the aerodynamic shapes of bluff body sections.

 Artículos similares

       
 
Aleksandr Cariow, Janusz P. Paplinski and Marta Makowska    
The paper introduces a range of efficient algorithmic solutions for implementing the fundamental filtering operation in convolutional layers of convolutional neural networks on fully parallel hardware. Specifically, these operations involve computing M i... ver más
Revista: Applied Sciences

 
Riad Ibadulla, Thomas M. Chen and Constantino Carlos Reyes-Aldasoro    
This paper describes the transformation of a traditional in silico classification network into an optical fully convolutional neural network with high-resolution feature maps and kernels. When using the free-space 4f system to accelerate the inference sp... ver más
Revista: AI

 
Chunyan Zeng, Shuai Kong, Zhifeng Wang, Kun Li and Yuhao Zhao    
In recent years, digital audio tampering detection methods by extracting audio electrical network frequency (ENF) features have been widely applied. However, most digital audio tampering detection methods based on ENF have the problems of focusing on spa... ver más
Revista: Information

 
Jun Wu, Xinyi Sun, Lei Qu, Xilan Tian and Guangyu Yang    
Recently, deep learning tools have made significant progress in hyperspectral image (HSI) classification. Most of existing methods implement a patch-based classification manner which may cause training test information leakage or waste labeled informatio... ver más
Revista: Applied Sciences

 
Artemiy Belousov, Ivan Kisel, Robin Lakos and Akhil Mithran    
Algorithms optimized for high-performance computing, which ensure both speed and accuracy, are crucial for real-time data analysis in heavy-ion physics experiments. The application of neural networks and other machine learning methodologies, which are fa... ver más
Revista: Algorithms