Redirigiendo al acceso original de articulo en 23 segundos...
ARTÍCULO
TITULO

Simulation Study on the Performance and Emission Parameters of a Marine Diesel Engine

Rongbin Xin    
Jinguo Zhai    
Chang Liao    
Zongyu Wang    
Jifeng Zhang    
Zabihollah Bazari and Yulong Ji    

Resumen

Development of intelligent ships requires marine diesel engine simulation models of high accuracy and fast response. In addition, with advent of tighter shipping air emissions regulations, such models are required to have emission prediction capabilities. In this article, such a model was developed and validated for a 30,000-ton bulk carrier main engine using MATLAB/Simulink. The simulation is based on mean value model, which predicts both the steady-state and dynamic performance of the engine. The results show that the steady-state performance parameters of the main engine are predicted within 2.2% error, and the exhaust emissions parameters are predicted within 7% error as compared to the bench test data from the engine manufacturer. The Maximum Continuous Rating (MCR) points at 100%, 75%, 50% and 25% of the E3 duty cycle were investigated with emphasis according to the diesel propulsion characteristics. In dynamic simulation, it is found that the compressor pressure fluctuation is greater than that of the exhaust pressure with the load variation. Furthermore, the compressor and the exhaust pipe have a similar temperature drop value (about 60 K) when the engine load changes from 100% to 50% MCR, and the exhaust pipe temperature fluctuation is more significant when the load varies from 50% to 25% MCR. The above results show the model?s good transient capability in simulating the dynamic characteristics of the engine. This model can be used especially for the development and control of marine diesel engines in intelligent ships as well as training-oriented marine engine and ship simulators.

 Artículos similares

       
 
Xiaoni Yang, Juanjuan Ma, Yongye Li, Xihuan Sun, Xiaomeng Jia and Yonggang Li    
Hydraulic transportation of the piped carriage is a new energy-saving and environmentally-friendly transportation mode. There are two main states in the conveying process, stationary and moving. In the process of hydraulic transportation of the piped car... ver más
Revista: Water

 
Yufan He, Can Luo, Li Cheng, Yandong Gu and Bin Gu    
The shaft-type tubular pumping station has the remarkable characteristics of a large flow rate and high efficiency. It can realize the functions of irrigation, pumping, and drainage through pumping and generating conditions considering tides. Moreover, i... ver más

 
Shoubo Shang, Xiangyu Wang, Qingnan Han, Peng Jia, Feihong Yun, Jing Wen, Chao Li, Ming Ju and Liquan Wang    
This paper proposes a version of the deep-sea environment simulated test system for subsea control modules to solve the problem of incomplete testing systems for electro-hydraulic subsea control modules. Based on the subsea control module test requiremen... ver más

 
Abhishek Phadke, F. Antonio Medrano, Tianxing Chu, Chandra N. Sekharan and Michael J. Starek    
UAV swarms have multiple real-world applications but operate in a dynamic environment where disruptions can impede performance or stop mission progress. Ideally, a UAV swarm should be resilient to disruptions to maintain the desired performance and produ... ver más
Revista: Aerospace

 
Koichiro Hirose, Koji Fukudome, Hiroya Mamori and Makoto Yamamoto    
Ice crystal icing occurs in jet engine compressors, which can severely degrade jet engine performance. In this study, we developed an ice crystal trajectory simulation, considering the state changes of ice crystals with a forced convection model, indicat... ver más
Revista: Aerospace