Redirigiendo al acceso original de articulo en 15 segundos...
Inicio  /  Forecasting  /  Vol: 2 Par: 3 (2020)  /  Artículo
ARTÍCULO
TITULO

Time Series Analysis of Forest Dynamics at the Ecoregion Level

Olga Rumyantseva    
Andrey Sarantsev and Nikolay Strigul    

Resumen

Forecasting of forest dynamics at a large scale is essential for land use management, global climate change and biogeochemistry modeling. We develop time series models of the forest dynamics in the conterminous United States based on forest inventory data collected by the US Forest Service over several decades. We fulfilled autoregressive analysis of the basal forest area at the level of US ecological regions. In each USA ecological region, we modeled basal area dynamics on individual forest inventory pots and performed analysis of its yearly averages. The last task involved Bayesian techniques to treat irregular data. In the absolute majority of ecological regions, basal area yearly averages behave as geometric random walk with normal increments. In California Coastal Province, geometric random walk with normal increments adequately describes dynamics of both basal area yearly averages and basal area on individual forest plots. Regarding all the rest of the USA?s ecological regions, basal areas on individual forest patches behave as random walks with heavy tails. The Bayesian approach allowed us to evaluate forest growth rate within each USA ecological region. We have also implemented time series ARIMA models for annual averages basal area in every USA ecological region. The developed models account for stochastic effects of environmental disturbances and allow one to forecast forest dynamics.

 Artículos similares

       
 
Krzysztof Drachal and Michal Pawlowski    
This study firstly applied a Bayesian symbolic regression (BSR) to the forecasting of numerous commodities? prices (spot-based ones). Moreover, some features and an initial specification of the parameters of the BSR were analysed. The conventional approa... ver más

 
Konstantinos P. Fourkiotis and Athanasios Tsadiras    
In today?s evolving global world, the pharmaceutical sector faces an emerging challenge, which is the rapid surge of the global population and the consequent growth in drug production demands. Recognizing this, our study explores the urgent need to stren... ver más
Revista: Forecasting

 
Aymane Ahajjam, Jaakko Putkonen, Emmanuel Chukwuemeka, Robert Chance and Timothy J. Pasch    
Local weather forecasts in the Arctic outside of settlements are challenging due to the dearth of ground-level observation stations and high computational costs. During winter, these forecasts are critical to help prepare for potentially hazardous weathe... ver más
Revista: Forecasting

 
Yoga Sasmita, Heri Kuswanto and Dedy Dwi Prastyo    
Standard time-series modeling requires the stability of model parameters over time. The instability of model parameters is often caused by structural breaks, leading to the formation of nonlinear models. A state-dependent model (SDM) is a more general an... ver más
Revista: Forecasting

 
Monica Alexiadou, Emmanouil Sofianos, Periklis Gogas and Theophilos Papadimitriou    
In this study we investigate possible long-range trends in the cryptocurrency market. We employed the Hurst exponent in a sample covering the period from 1 January 2016 to 26 March 2021. We calculated the Hurst exponent in three non-overlapping consecuti... ver más