Redirigiendo al acceso original de articulo en 17 segundos...
ARTÍCULO
TITULO

Semantic Ontology-Based Approach to Enhance Arabic Text Classification

Ahmad Hawalah    

Resumen

Text classification is a process of classifying textual contents to a set of predefined classes and categories. As enormous numbers of documents and contextual contents are introduced every day on the Internet, it becomes essential to use text classification techniques for different purposes such as enhancing search retrieval and recommendation systems. A lot of work has been done to study different aspects of English text classification techniques. However, little attention has been devoted to study Arabic text classification due to the difficulty of processing Arabic language. Consequently, in this paper, we propose an enhanced Arabic topic-discovery architecture (EATA) that can use ontology to provide an effective Arabic topic classification mechanism. We have introduced a semantic enhancement model to improve Arabic text classification and the topic discovery technique by utilizing the rich semantic information in Arabic ontology. We rely in this study on the vector space model (term frequency-inverse document frequency (TF-IDF)) as well as the cosine similarity approach to classify new Arabic textual documents.

 Artículos similares

       
 
Thiago Sobral, Teresa Galvão, José Borges     Pág. 180 - 188
This paper proposes an ontology-based approach to support the process of visualizing urban mobility data. The approach consists of building a visualization-oriented urban mobility ontology, focused on themes such as ridership, vehicle flows and the like.... ver más