Resumen
Less attention was paid to the remediation of volatile organic compounds (VOCs) contaminated soil treated by thermal conduction heating (TCH) coupled with chemical oxidization. In this study, the lab-scale remediation experiments of trichloroethylene (TCE)-contaminated soil by TCH and TCH coupled with persulfate (TCH + PS) were performed to explore the influences of PS usage, temperature, reaction time, and the variation of soil properties. TCE was removed from contaminated soils using TCH with a temperature lower than boiling point, and the removal ratio of TCE reached 78.21% with a reaction time of 6h at 60 °C. In the TCH + PS treatments, the removal ratio increased to 87.60~99.50% when the PS dosage was increased from 7.0 mmol/kg to 17.5 mmol/kg at 60 °C. However, the usage efficiency of PS had no positive relationship with oxidant usage and temperature. The treatment with 14 mmol/kg PS after 3h at 50 °C had the highest PS usage ratio of 3.05. In addition, soil pH and soil organic matter (SOM) did not decrease significantly in the TCH-only treatment, while the content of SOM declined by almost 50% after the TCH + PS treatment. Overall, it was concluded that TCH + PS achieved higher removal efficiency, whereas TCH had less disturbance on soil pH and SOM. As such, the applicability of TCH-only or TCH + PS treatments is site-specific.