Resumen
Sidewall roughness is a key factor influencing the shaft resistance of rock-socketed piles. Owing to the difficulties in onsite measuring and the inconsistency in quantitatively characterizing the roughness degree of sidewalls, existing approaches for estimating the shaft resistance of rock-socketed piles often cannot take this factor into account. Based on the measured surface curves of the 68 sockets in No. 6# and 7# group piles of the Chishi Bridge on the Ru-Chen Expressway in China, sidewall roughness is described by introducing the roughness factor (RF) based on the Horvath and Monash models, respectively, while a statistical analysis of the sidewall roughness in rock-socketed sections is also conducted. In addition, an analytical solution to the shaft resistance of rock-socketed piles with consideration of sidewall roughness and the relative settlement of the pile?rocks interface (?s), is proposed and further compared with the field load tests. The results showed that: the RF obtained by the Horvath model is bigger than that obtained by the Monash model; the larger RF is, the bigger the mobilized shaft resistance; the analytical solution generally overestimates the mobilized shaft resistance of rock-socketed piles under the same ?s, and the deviation is less than 15% if ?s is larger than 3.00 mm. The Horvath model is recommended to quantitatively characterize the roughness degree of sidewalls for its good operability in practice.