Resumen
This paper presents an effective stochastic algorithm that embeds a large neighborhood decomposition technique into a variable neighborhood search for solving the permutation flow-shop scheduling problem. The algorithm first constructs a permutation as a seed using a recursive application of the extended two-machine problem. In this method, the jobs are recursively decomposed into two separate groups, and, for each group, an optimal permutation is calculated based on the extended two-machine problem. Then the overall permutation, which is obtained by integrating the sub-solutions, is improved through the application of a variable neighborhood search technique. The same as the first technique, this one is also based on the decomposition paradigm and can find an optimal arrangement for a subset of jobs. In the employed large neighborhood search, the concept of the critical path has been used to help the decomposition process avoid unfruitful computation and arrange only promising contiguous parts of the permutation. In this fashion, the algorithm leaves those parts of the permutation which already have high-quality arrangements and concentrates on modifying other parts. The results of computational experiments on the benchmark instances indicate the procedure works effectively, demonstrating that solutions, in a very short distance of the best-known solutions, are calculated within seconds on a typical personal computer. In terms of the required running time to reach a high-quality solution, the procedure outperforms some well-known metaheuristic algorithms in the literature.