Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  Future Internet  /  Vol: 11 Par: 1 (2019)  /  Artículo
ARTÍCULO
TITULO

Object Detection Network Based on Feature Fusion and Attention Mechanism

Ying Zhang    
Yimin Chen    
Chen Huang and Mingke Gao    

Resumen

In recent years, almost all of the current top-performing object detection networks use CNN (convolutional neural networks) features. State-of-the-art object detection networks depend on CNN features. In this work, we add feature fusion in the object detection network to obtain a better CNN feature, which incorporates well deep, but semantic, and shallow, but high-resolution, CNN features, thus improving the performance of a small object. Also, the attention mechanism was applied to our object detection network, AF R-CNN (attention mechanism and convolution feature fusion based object detection), to enhance the impact of significant features and weaken background interference. Our AF R-CNN is a single end to end network. We choose the pre-trained network, VGG-16, to extract CNN features. Our detection network is trained on the dataset, PASCAL VOC 2007 and 2012. Empirical evaluation of the PASCAL VOC 2007 dataset demonstrates the effectiveness and improvement of our approach. Our AF R-CNN achieves an object detection accuracy of 75.9% on PASCAL VOC 2007, six points higher than Faster R-CNN.

 Artículos similares

       
 
Pradeep Kumar, Guo-Liang Shih, Bo-Lin Guo, Siva Kumar Nagi, Yibeltal Chanie Manie, Cheng-Kai Yao, Michael Augustine Arockiyadoss and Peng-Chun Peng    
Violent attacks have been one of the hot issues in recent years. In the presence of closed-circuit televisions (CCTVs) in smart cities, there is an emerging challenge in apprehending criminals, leading to a need for innovative solutions. In this paper, t... ver más
Revista: Future Internet

 
Marco Guerrieri, Giuseppe Parla, Masoud Khanmohamadi and Larysa Neduzha    
Asphalt pavements are subject to regular inspection and maintenance activities over time. Many techniques have been suggested to evaluate pavement surface conditions, but most of these are either labour-intensive tasks or require costly instruments. This... ver más
Revista: Infrastructures

 
Yao-Liang Chung    
Against the backdrop of rising road traffic accident rates, measures to prevent road traffic accidents have always been a pressing issue in Taiwan. Road traffic accidents are mostly caused by speeding and roadway obstacles, especially in the form of rock... ver más
Revista: Future Internet

 
Mohammed Imran Basheer Ahmed, Rim Zaghdoud, Mohammed Salih Ahmed, Razan Sendi, Sarah Alsharif, Jomana Alabdulkarim, Bashayr Adnan Albin Saad, Reema Alsabt, Atta Rahman and Gomathi Krishnasamy    
To constructively ameliorate and enhance traffic safety measures in Saudi Arabia, a prolific number of AI (Artificial Intelligence) traffic surveillance technologies have emerged, including Saher, throughout the past years. However, rapidly detecting a v... ver más

 
Christine Dewi, Abbott Po Shun Chen and Henoch Juli Christanto    
Hand detection is a key step in the pre-processing stage of many computer vision tasks because human hands are involved in the activity. Some examples of such tasks are hand posture estimation, hand gesture recognition, human activity analysis, and other... ver más