Resumen
Joint assessment of groundwater-surface water resources can help develop sustainable regional water management plans for intensive agriculture. In this study, we estimated allowable groundwater and surface water quantities using a water balance model, WetSpass-GMS, for the Sanjiang Plain (10.9 × 104 km2), one of the most important grain production bases in China. We then applied a double control based on the groundwater availability and the concept of an ecologically ideal shallow groundwater depth (EISGD) to three different water use scenarios: (A) continuation of the current water use management; (B) maximal use of water resources under a double control; and (C) irrigation of 266.7 × 104 hectares that are suitable for rice cultivation. We found an annual allowable surface water quantity of 4.71 billion cubic meters for the region and an annual exploitable groundwater quantity of 4.65 billion cubic meters under full consideration of water requirements, i.e., sustaining river base flow, necessary riverine sediment transport, and ecological water supplies for wetlands and reservoirs. Our simulation results showed that for Scenario A, groundwater level in the region would continue falling, and that the groundwater levels in wet, normal and dry years would drop below the EISGD level in 2028, 2023 and 2019, respectively. For Scenario B, groundwater and surface water would be able to support rice paddies of 219.7 × 104 hectares, 212.7 × 104 hectares, and 209.3 × 104 hectares during wet, normal and dry years, respectively. For Scenario C, future demands on groundwater and surface water under wet, dry and normal years would all exceed their allowable supplies. Overall, this study indicates that integrated management plans promoting an increase of surface water use and a reduction in irrigation with groundwater should be developed for sustainable agriculture and ecological preservation on the Sanjiang Plain.