Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Applied Sciences  /  Vol: 12 Par: 9 (2022)  /  Artículo
ARTÍCULO
TITULO

Object Detection Algorithm for Wheeled Mobile Robot Based on an Improved YOLOv4

Yanxin Hu    
Gang Liu    
Zhiyu Chen and Jianwei Guo    

Resumen

In practical applications, the intelligence of wheeled mobile robots is the trend of future development. Object detection for wheeled mobile robots requires not only the recognition of complex surroundings, but also the deployment of algorithms on resource-limited devices. However, the current state of basic vision technology is insufficient to meet demand. Based on this practical problem, in order to balance detection accuracy and detection efficiency, we propose an object detection algorithm based on a combination of improved YOLOv4 and improved GhostNet in this paper. Firstly, the backbone feature extraction network of original YOLOv4 is replaced with the trimmed GhostNet network. Secondly, enhanced feature extraction network in the YOLOv4, ordinary convolution is supplanted with a combination of depth-separable and ordinary convolution. Finally, the hyperparameter optimization was carried out. The experimental results show that the improved YOLOv4 network proposed in this paper has better object detection performance. Specifically, the precision, recall, F1, mAP (0.5) values, and mAP (0.75) values are 88.89%, 87.12%, 88.00%, 86.84%, and 50.91%, respectively. Although the mAP (0.5) value is only 2.23% less than the original YOLOv4, it is higher than YOLOv4_tiny, Eifficientdet-d0, YOLOv5n, and YOLOv5 compared to 29.34%, 28.99%, 20.36%, and 18.64%, respectively. In addition, it outperformed YOLOv4 in terms of mAP (0.75) value and precision, and its model size is only 42.5 MB, a reduction of 82.58% when compared to YOLOv4?s model size.

 Artículos similares

       
 
Xinmin Li, Yingkun Wei, Jiahui Li, Wenwen Duan, Xiaoqiang Zhang and Yi Huang    
Object detection in unmanned aerial vehicle (UAV) images has become a popular research topic in recent years. However, UAV images are captured from high altitudes with a large proportion of small objects and dense object regions, posing a significant cha... ver más
Revista: Applied Sciences

 
Ugur Akis and Serkan Dislitas    
In applications reliant on image processing, the management of lighting holds significance for both precise object detection and efficient energy utilization. Conventionally, lighting control involves manual switching, timed activation or automated adjus... ver más
Revista: Applied Sciences

 
Yuchen Dong, Heng Zhou, Chengyang Li, Junjie Xie, Yongqiang Xie and Zhongbo Li    
Camouflaged object detection (COD) is an arduous challenge due to the striking resemblance of camouflaged objects to their surroundings. The abundance of similar background information can significantly impede the efficiency of camouflaged object detecti... ver más
Revista: Applied Sciences

 
Yiming Mo, Lei Wang, Wenqing Hong, Congzhen Chu, Peigen Li and Haiting Xia    
The intrusion of foreign objects on airport runways during aircraft takeoff and landing poses a significant safety threat to air transportation. Small-scale Foreign Object Debris (FOD) cannot be ruled out on time by traditional manual inspection, and the... ver más
Revista: Applied Sciences

 
Ahad Alotaibi, Chris Chatwin and Phil Birch    
In aerial surveillance systems, achieving optimal object detection precision is of paramount importance for effective monitoring and reconnaissance. This article presents a novel approach to enhance object detection accuracy through the integration of De... ver más