Resumen
This study mainly focuses on the estimation calculation of urban parking space. Urban parking has always been a problem that plagues governments worldwide. Due to limited parking space, if the parking space is not controlled correctly, with the city?s development, the city will eventually face the result that there is nowhere to park. In order to effectively manage the urban parking problem, using the dynamic parking fee pricing mechanism combined with the concept of shared parking is an excellent way to alleviate the parking problem, but how to quickly estimate the total number of available parking spaces in the area is a big problem. This study provides a fast parking space estimation method and verifies the feasibility of this estimation method through actual data from various types of fields. This study also comprehensively discusses the changing characteristics of parking space data in multiple areas and possible data anomalies and studies and explains the causes of data anomalies. The study also concludes with a description of potential applications of the predictive model in conjunction with subsequent dynamic parking pricing mechanisms and self-driving systems.