Resumen
The outbreak of COVID-19 resulted in severe pressure on the existing medical infrastructure in China. Several Chinese cities began to construct temporary hospitals for the centralized treatment of COVID-19 patients. The harmful exhaust air from the outlets of these hospitals may have a significant adverse impact on the fresh-air intakes and surrounding environment. Owing to the need to rapidly construct these hospitals within 6?10 days, just a few hours are allowed for the analysis of the impact of this exhaust air on the environment. To overcome this difficulty, a high-efficiency simulation framework is proposed in this study. Based on the open-source computational fluid dynamics software, FDS, the proposed framework is adaptive and incorporates building information with different levels of detail during various design phases of the hospital, and has been applied in the design of the Wuhan Huoshenshan Hospital, the first typical COVID-19 temporary hospital in China. According to the simulation results, neither the fresh-air intakes nor the surrounding buildings would be polluted by the harmful air discharged from the air outlets of the Huoshenshan hospital. The proposed simulation framework can provide a reference for the design and overall planning of similar hospitals in China and other affected countries.