Redirigiendo al acceso original de articulo en 22 segundos...
ARTÍCULO
TITULO

Space-Time Variation and Spatial Differentiation of COVID-19 Confirmed Cases in Hubei Province Based on Extended GWR

Yanwen Liu    
Zongyi He and Xia Zhou    

Resumen

Clarifying the regional transmission mechanism of COVID-19 has practical significance for effective protection. Taking 103 county-level regions of Hubei Province as an example, and taking the fastest-spreading stage of COVID-19, which lasted from 29 January 2020, to 29 February 2020, as the research period, we systematically analyzed the population migration, spatio-temporal variation pattern of COVID-19, with emphasis on the spatio-temporal differences and scale effects of related factors by using the daily sliding, time-ordered data analysis method, combined with extended geographically weighted regression (GWR). The results state that: Population migration plays a two-way role in COVID-19 variation. The emigrants? and immigrants? population of Wuhan city accounted for 3.70% and 73.05% of the total migrants? population respectively; the restriction measures were not only effective in controlling the emigrants, but also effective in preventing immigrants. COVID-19 has significant spatial autocorrelation, and spatio-temporal differentiation has an effect on COVID-19. Different factors have different degrees of effect on COVID-19, and similar factors show different scale effects. Generally, the pattern of spatial differentiation is a transitional pattern of parallel bands from east to west, and also an epitaxial radiation pattern centered in the Wuhan 1 + 8 urban circle. This paper is helpful to understand the spatio-temporal evolution of COVID-19 in Hubei Province, so as to provide a reference for similar epidemic prevention.

 Artículos similares