Redirigiendo al acceso original de articulo en 22 segundos...
ARTÍCULO
TITULO

An Accurate and Efficient Quaternion-Based Visualization Approach to 2D/3D Vector Data for the Mobile Augmented Reality Map

Chenliang Wang    
Kejia Huang and Wenjiao Shi    

Resumen

Increasingly complex vector map applications and growing multi-source spatial data pose a serious challenge to the accuracy and efficiency of vector map visualization. It is true especially for real-time and dynamic scene visualization in mobile augmented reality, with the dramatic development of spatial data sensing and the emergence of AR-GIS. Such issues can be decomposed into three issues: accurate pose representation, fast and precise topological relationships computation and high-performance acceleration methods. To solve these issues, a novel quaternion-based real-time vector map visualization approach is proposed in this paper. It focuses on precise position and orientation representation, accurate and efficient spatial relationships calculation and acceleration parallel rendering in mobile AR. First, a quaternion-based pose processing method for multi-source spatial data is developed. Then, the complex processing of spatial relationships is mapped into simple and efficient quaternion-based operations. With these mapping methods, spatial relationship operations with large computational volumes can be converted into efficient quaternion calculations, and then the results are returned to respond to the interaction. Finally, an asynchronous rendering acceleration mechanism is also presented in this paper. Experiments demonstrated that the method proposed in this paper can significantly improve vector visualization of the AR map. The new approach, when compared to conventional visualization methods, provides more stable and accurate rendering results, especially when the AR map has strenuous movements and high frequency variations. The smoothness of the user interaction experience is also significantly improved.

Palabras claves

 Artículos similares

       
 
Mingze Li, Bing Li, Zhigang Qi, Jiashuai Li and Jiawei Wu    
Predicting ship trajectories plays a vital role in ensuring navigational safety, preventing collision incidents, and enhancing vessel management efficiency. The integration of advanced machine learning technology for precise trajectory prediction is emer... ver más

 
Andri Gunnarsson and Sigurdur M. Gardarsson    
Efficient water resource management in glacier- and snow-dominated basins requires accurate estimates of the snow water equivalent (SWE) in late winter and spring and melt onset timing and intensity. To understand the high spatio-temporal variability of ... ver más
Revista: Hydrology

 
Priyank Kalgaonkar and Mohamed El-Sharkawy    
Accurate perception is crucial for autonomous vehicles (AVs) to navigate safely, especially in adverse weather and lighting conditions where single-sensor networks (e.g., cameras or radar) struggle with reduced maneuverability and unrecognizable targets.... ver más
Revista: Future Internet

 
Naseer Muhammad Khan, Liqiang Ma, Muhammad Zaka Emad, Tariq Feroze, Qiangqiang Gao, Saad S. Alarifi, Li Sun, Sajjad Hussain and Hui Wang    
The brittleness index is one of the most integral parameters used in assessing rock bursts and catastrophic rock failures resulting from deep underground mining activities. Accurately predicting this parameter is crucial for effectively monitoring rock b... ver más
Revista: Water

 
Sepideh Molaei, Stefano Cirillo and Giandomenico Solimando    
MicroRNAs (miRNAs) play a crucial role in cancer development, but not all miRNAs are equally significant in cancer detection. Traditional methods face challenges in effectively identifying cancer-associated miRNAs due to data complexity and volume. This ... ver más