Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Applied Sciences  /  Vol: 10 Par: 3 (2020)  /  Artículo
ARTÍCULO
TITULO

Wind Pressure Coefficient on a Multi-Storey Building with External Shading Louvers

Jianwen Zheng    
Qiuhua Tao and Li Li    

Resumen

Wind characteristics on building surfaces are used to evaluate natural ventilation of a building. As a type of building component, external shading louvers are applied in hot climatic regions to block solar radiation and provide better visual environments. The structure of external louvers can affect wind-induced characteristics, such as convective heat transfer coefficient, wind pressure and pollutant dispersion around building envelopes. This paper aims to analyze the potential ventilation capacity of a multi-storey building with shading louvers, based on wind pressure coefficient by the numerical method. A reference case was established and a previous study was applied to validate the numerical results. The rotation angle of horizontal louvers is taken from 0° to 75° in the simulation cases. The results show that average wind pressure has the greatest reduction for all floors when rotation angle turns from 60° to 75°. Ventilation openings on the stagnation zone contribute to higher ventilation rates for the windward facade with louvers. The analysis, based on multi-floor and multi-row buildings under shaded conditions, will provide a greater perspective for engineers to make optimal natural ventilation routes in multi-storey buildings with external shading louvers.

 Artículos similares

       
 
Zhe Xu, Bing Guan, Lixin Wei, Shuangqing Chen, Minghao Li and Xiaoyu Jiang    
The development of hydrogen-blended natural gas (HBNG) increases the risk of gas transportation and presents challenges for pipeline security in utility tunnels. The objective of this study is to investigate the diffusion properties of HBNG in utility tu... ver más
Revista: Applied Sciences

 
Kees Nederhoff, Sean C. Crosby, Nate R. Van Arendonk, Eric E. Grossman, Babak Tehranirad, Tim Leijnse, Wouter Klessens and Patrick L. Barnard    
The Puget Sound Coastal Storm Modeling System (PS-CoSMoS) is a tool designed to dynamically downscale future climate scenarios (i.e., projected changes in wind and pressure fields and temperature) to compute regional water levels, waves, and compound flo... ver más
Revista: Water

 
M. Domaneschi, R. Cucuzza, L. Sardone, S. Londoño Lopez, M. Movahedi and G. C. Marano    
Random vibration analysis is a mathematical tool that offers great advantages in predicting the mechanical response of structural systems subjected to external dynamic loads whose nature is intrinsically stochastic, as in cases of sea waves, wind pressur... ver más
Revista: Computation

 
Lidong Zhang, Zhengcong Feng, Yuze Zhao, Xiandong Xu, Jiangzhe Feng, Huaihui Ren, Bo Zhang and Wenxin Tian    
During the expansion of a wind farm, the strategic placement of wind turbines can significantly improve wind energy utilization. This study investigates the evolution of wake turbulence in a wind farm after introducing smaller wind turbines within the ga... ver más

 
Zhitao Guo, Xudong Zhao, Qingfen Ma, Jingru Li and Zhongye Wu    
As a key component connecting a floating wind turbine with static sea cables, dynamic cables undergo significant tensile and bending loads caused by hydrostatic pressure, self-weight, waves, and ocean currents during service, which can lead to fatigue fa... ver más