Resumen
Object detection has been playing a significant role in computer vision for a long time, but it is still full of challenges. In this paper, we propose a novel object detection framework based on relationship among different objects and the scene-level information of the whole image to cope with the problem that some strongly correlated objects are difficult to be recognized. Our motivation is to enrich the semantics of object detection feature by a scene-level information branch and a relationship branch. There are three important changes of our framework over traditional detection methods: representation of relationship, scene-level information as the prior knowledge and the fusion of the above two information. Extensive experiments are carried out on PASCAL VOC and MS COCO databases. The experimental results show that the detection performance can be improved by introducing relationship and scene-level information, and our proposed model achieve better performance than several classical and state-of-the-art methods.