Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Applied Sciences  /  Vol: 10 Par: 23 (2020)  /  Artículo
ARTÍCULO
TITULO

Estimating Cycling Aerodynamic Performance Using Anthropometric Measures

Raman Garimella    
Thomas Peeters    
Eduardo Parrilla    
Jordi Uriel    
Seppe Sels    
Toon Huysmans and Stijn Verwulgen    

Resumen

Aerodynamic drag force and projected frontal area (A) are commonly used indicators of aerodynamic cycling efficiency. This study investigated the accuracy of estimating these quantities using easy-to-acquire anthropometric and pose measures. In the first part, computational fluid dynamics (CFD) drag force calculations and A (m2) values from photogrammetry methods were compared using predicted 3D cycling models for 10 male amateur cyclists. The shape of the 3D models was predicted using anthropometric measures. Subsequently, the models were reposed from a standing to a cycling pose using joint angle data from an optical motion capture (mocap) system. In the second part, a linear regression analysis was performed to predict A using 26 anthropometric measures combined with joint angle data from two sources (optical and inertial mocap, separately). Drag calculations were strongly correlated with benchmark projected frontal area (coefficient of determination R2 = 0.72). A can accurately be predicted using anthropometric data and joint angles from optical mocap (root mean square error (RMSE) = 0.037 m2) or inertial mocap (RMSE = 0.032 m2). This study showed that aerodynamic efficiency can be predicted using anthropometric and joint angle data from commercially available, inexpensive posture tracking methods. The practical relevance for cyclists is to quantify and train posture during cycling for improving aerodynamic efficiency and hence performance.

 Artículos similares