Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Applied Sciences  /  Vol: 13 Par: 13 (2023)  /  Artículo
ARTÍCULO
TITULO

Numerical Simulation Analysis of Wellbore Stability in Weak Interlayer of Igneous Rock

Dongyu Su    
Zhifang Chen    
Nanxiang Liu and Xuyue Chen    

Resumen

Wellbores drilled in igneous formation with weak interlayers face significant risk of instabilities. This study aims to investigate the underlying mechanisms of these instabilities by employing a combination of rock mechanics tests and numerical simulation techniques. The mechanical properties of igneous rocks are evaluated to determine core strength parameters and analyze the impact of drilling fluid immersion on core strength. The two-dimensional model of the igneous formation is refined, and theoretical derivations are made, including the linear elasticity principal equation and the extent of the plastic zone within the wellbore. A numerical simulation model is developed using ABAQUS to analyze the wellbore stability of the weak interlayer igneous formation, accounting for drilling fluid immersion and weak interlayer conditions. The numerical simulations focus on four key aspects of the weak interlayer formation: strength, permeability, horizontal in-situ stress anisotropy, and abnormal pore pressure. The study findings indicate that strengthening the weak interlayer effectively mitigates the risk of wellbore instability. Moreover, the permeability of the weak interlayer exhibits minimal impact on wellbore stability within the formation. However, an increase in horizontal in-situ stress anisotropy and the abnormal pore pressure both decrease wellbore stability along the direction of the maximum in-situ stress.

 Artículos similares

       
 
Yingke Liao, Guiping Zhu, Guang Wang, Jie Wang and Yanchao Ding    
Magnetohydrodynamic (MHD) is one of the most promising novel propulsion technologies with the advantages of no pollution, high specific impulse, and high acceleration efficiency. As the carrier of this technology, the MHD accelerator has enormous potenti... ver más
Revista: Aerospace

 
Roberto Scigliano, Valeria De Simone, Roberta Fusaro, Davide Ferretto and Nicole Viola    
The design of integrated and highly efficient solutions for thermal management is a key capability for different aerospace products, ranging from civil aircraft using hydrogen on board to miniaturized satellites. In particular, this paper discloses a nov... ver más
Revista: Aerospace

 
Chi Zhang, Yaguo Lyu, Le Jiang and Zhenxia Liu    
The numerical simulation method was used to investigate the deflection and deformation process of a circular lubricating oil jet in transverse shear airflow. The numerical model was compared and validated against the experimental data. The physical param... ver más
Revista: Aerospace

 
Yufan He, Can Luo, Li Cheng, Yandong Gu and Bin Gu    
The shaft-type tubular pumping station has the remarkable characteristics of a large flow rate and high efficiency. It can realize the functions of irrigation, pumping, and drainage through pumping and generating conditions considering tides. Moreover, i... ver más

 
Jing Liu, Zongyu Li, Hanming Huang, Weiwei Lin, Zhilin Sun and Fanjun Chen    
In response to the deficiencies in existing bridge pier scour protection technologies, this paper introduces a novel protective device, namely a normal distribution-shaped surface (BND) protection devices formed by rotating a concave normal curve. A thre... ver más