Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Applied Sciences  /  Vol: 10 Par: 15 (2020)  /  Artículo
ARTÍCULO
TITULO

Application of Artificial Neural Network for Modeling and Studying In Vitro Genotype-Independent Shoot Regeneration in Wheat

Mohsen Hesami    
Jorge A. Condori-Apfata    
Maria Valderrama Valencia and Mohsen Mohammadi    

Resumen

Optimizing in vitro shoot regeneration conditions in wheat is one of the important steps in successful micropropagation and gene transformation. Various factors such as genotypes, explants, and phytohormones affect in vitro regeneration of wheat, hindering the ability to tailor genotype-independent protocols. Novel computational approaches such as artificial neural networks (ANNs) can facilitate modeling and predicting outcomes of tissue culture experiments and thereby reduce large experimental treatments and combinations. In this study, generalized regression neural network (GRNN) were used to model and forecast in vitro shoot regeneration outcomes of wheat on the basis of 10 factors including genotypes, explants, and different concentrations of 6-benzylaminopurine (BAP), kinetin (Kin), 2,4-dichlorophenoxyacetic acid (2,4-D), indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), 1-naphthaleneacetic acid (NAA), zeatin, and CuSO4. In addition, GRNN was linked to a genetic algorithm (GA) to identify an optimized solution for maximum shoot regeneration. Results indicated that GRNN could accurately predict the shoot regeneration frequency in the validation set with a coefficient determination of 0.78. Sensitivity analysis demonstrated that shoot regeneration frequency was more sensitive to variables in the order of 2,4-D > explant > genotype < zeatin < NAA. Results of this study suggest that GRNN-GA can be used as a tool, besides experimental approaches, to develop and optimize in vitro genotype-independent regeneration protocols.

 Artículos similares

       
 
Min-Chul Shin, Dae-Hoon Lee, Albert Chung and Yu-Won Kang    
This study explores the comprehensive understanding of taekwondo, the application of fourth industrial revolution technologies in various kinds of sports, the development of taekwondo through artificial intelligence (AI), and essential technology in the ... ver más
Revista: Applied Sciences

 
Rafal Doniec, Eva Odima Berepiki, Natalia Piaseczna, Szymon Siecinski, Artur Piet, Muhammad Tausif Irshad, Ewaryst Tkacz, Marcin Grzegorzek and Wojciech Glinkowski    
Cardiovascular diseases (CVDs) are chronic diseases associated with a high risk of mortality and morbidity. Early detection of CVD is crucial to initiating timely interventions, such as appropriate counseling and medication, which can effectively manage ... ver más
Revista: Applied Sciences

 
Giampaolo D?Alessandro, Pantea Tavakolian and Stefano Sfarra    
The present review aims to analyze the application of infrared thermal imaging, aided by bio-heat models, as a tool for the diagnosis of skin and breast cancers. The state of the art of the related technical procedures, bio-heat transfer modeling, and th... ver más
Revista: Applied Sciences

 
Yumei Zhang, Jie Zhang, Ye Li, Dan Yao, Yue Zhao, Yi Ai, Weijun Pan and Jiang Li    
Acoustic metamaterials (AMs) composed of periodic artificial structures have extraordinary sound wave manipulation capabilities compared with traditional acoustic materials, and they have attracted widespread research attention. The sound insulation perf... ver más
Revista: Acoustics

 
Angel E. Muñoz-Zavala, Jorge E. Macías-Díaz, Daniel Alba-Cuéllar and José A. Guerrero-Díaz-de-León    
This paper reviews the application of artificial neural network (ANN) models to time series prediction tasks. We begin by briefly introducing some basic concepts and terms related to time series analysis, and by outlining some of the most popular ANN arc... ver más
Revista: Algorithms