Resumen
One of the undesirable characteristics of some ground and natural water sources is hardness. Hard water can cause many problems around the world, including increased scaling on water pipes, boilers, atopic eczema and odd-tasting drinking water. Hardness in natural water is caused by dissolved minerals, mainly calcium and magnesium compounds. According to the Water Quality Association (WQA) and the United States Geological Survey (USGS), hard water is classified based on the Ca2+ and Mg2+ ion concentration in waters, as follows: 0?60 ppm as soft; 61?120 ppm as moderately hard; 121?180 ppm as hard and more than 180 ppm as very hard water. Most water utilities consider a hardness level between 50 and 150 ppm of CaCO3 as publicly acceptable. The present study investigated the effects of a carbonation process on the removal of hardness in different water samples. Currently, a wide variety of hardness removal technologies are available. Among those conventional methods, carbonation is an inexpensive process which can be used for the removal of Ca2+ and Mg2+ ions from hard water. This study measured the hardness levels of 17 different water samples using the ethylene diamine tetra acetic acid (EDTA) method. Among these, Seoul outdoor swimming pool water (140 ppm) samples showed high concentrations of Ca2+ and Mg2+ ions. The hardness of the different water samples was reduced by 40?85% by a carbonation process with a closed pressure reactor for a 5 min reaction time.