Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Algorithms  /  Vol: 12 Par: 9 (2019)  /  Artículo
ARTÍCULO
TITULO

Fault Diagnosis of Rolling Bearing Using Multiscale Amplitude-Aware Permutation Entropy and Random Forest

Yinsheng Chen    
Tinghao Zhang    
Wenjie Zhao    
Zhongming Luo and Kun Sun    

Resumen

A rolling bearing is an important connecting part between rotating machines. It is susceptible to mechanical stress and wear, which affect the running state of bearings. In order to effectively identify the fault types and analyze the fault severity of rolling bearings, a rolling bearing fault diagnosis method based on multiscale amplitude-aware permutation entropy (MAAPE) and random forest is proposed in this paper. The vibration signals of rolling bearings to be analyzed are decomposed into different coarse-grained time series by using the coarse-graining procedure in multiscale entropy, highlighting the fault dynamic characteristics of vibration signals at different scales. The fault features contained in the coarse-grained time series at different time scales are extracted by using amplitude-aware permutation entropy?s sensitive characteristics to signal amplitude and frequency changes to form fault feature vectors. The fault feature vector set is used to establish the random forest multi-classifier, and the fault type identification and fault severity analysis of rolling bearings is realized through random forest. In order to demonstrate the feasibility and effectiveness of the proposed method, experiments were fully conducted in this paper. The experimental results show that multiscale amplitude-aware permutation entropy can effectively extract fault features of rolling bearings from vibration signals, and the extracted feature vectors have high separability. Compared with other rolling bearing fault diagnosis methods, the proposed method not only has higher fault type identification accuracy, but also can analyze the fault severity of rolling bearings to some extent. The identification accuracy of four fault types is up to 96.0% and the fault recognition accuracy under different fault severity reached 92.8%.

 Artículos similares

       
 
Yong Liu, Jialin Zhou, Dong Zhang, Shaoyu Wei, Mingshun Yang and Xinqin Gao    
To solve the problem of low diagnostic accuracy caused by the scarcity of fault samples and class imbalance in the fault diagnosis task of box-type substations, a fault diagnosis method based on self-attention improvement of conditional tabular generativ... ver más
Revista: Applied Sciences

 
Qiang Cheng, Yong Cao, Zhifeng Liu, Lingli Cui, Tao Zhang and Lei Xu    
The computer numerically controlled (CNC) system is the key functional component of CNC machine tool control systems, and the servo drive system is an important part of CNC systems. The complex working environment will lead to frequent failure of servo d... ver más
Revista: Applied Sciences

 
Hongfeng Gao, Tiexin Xu, Renlong Li and Chaozhi Cai    
Because the gearbox in transmission systems is prone to failure and the fault signal is not obvious, the fault end cannot be located. In this paper, a gearbox fault diagnosis method grounded on improved complete ensemble empirical mode decomposition with... ver más
Revista: Applied Sciences

 
Xiaojiao Gu, Yang Tian, Chi Li, Yonghe Wei and Dashuai Li    
The fault diagnosis method proposed in this paper can be applied to the diagnosis of bearings in machine tool spindle systems.
Revista: Applied Sciences

 
Qingyong Zhang, Changhuan Song and Yiqing Yuan    
Vehicle gearboxes are subject to strong noise interference during operation, and the noise in the signal affects the accuracy of fault identification. Signal denoising and fault diagnosis processes are often conducted independently, overlooking their syn... ver más
Revista: Applied Sciences