Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Algorithms  /  Vol: 14 Par: 3 (2021)  /  Artículo
ARTÍCULO
TITULO

Local Data Debiasing for Fairness Based on Generative Adversarial Training

Ulrich Aïvodji    
François Bidet    
Sébastien Gambs    
Rosin Claude Ngueveu and Alain Tapp    

Resumen

The widespread use of automated decision processes in many areas of our society raises serious ethical issues with respect to the fairness of the process and the possible resulting discrimination. To solve this issue, we propose a novel adversarial training approach called GANSan for learning a sanitizer whose objective is to prevent the possibility of any discrimination (i.e., direct and indirect) based on a sensitive attribute by removing the attribute itself as well as the existing correlations with the remaining attributes. Our method GANSan is partially inspired by the powerful framework of generative adversarial networks (in particular Cycle-GANs), which offers a flexible way to learn a distribution empirically or to translate between two different distributions. In contrast to prior work, one of the strengths of our approach is that the sanitization is performed in the same space as the original data by only modifying the other attributes as little as possible, thus preserving the interpretability of the sanitized data. Consequently, once the sanitizer is trained, it can be applied to new data locally by an individual on their profile before releasing it. Finally, experiments on real datasets demonstrate the effectiveness of the approach as well as the achievable trade-off between fairness and utility.

 Artículos similares

       
 
Daniel Althoff, Lineu Neiva Rodrigues and Demetrius David da Silva    
Small reservoirs play a key role in the Brazilian savannah (Cerrado), making irrigation feasible and contributing to the economic development and social well-being of the population. A lack of information on factors, such as evaporative water loss, has a... ver más
Revista: Water

 
Julia Mayer, Martin Memmel, Johannes Ruf, Dhruv Patel, Lena Hoff and Sascha Henninger    
Urban tree cadastres, crucial for climate adaptation and urban planning, face challenges in maintaining accuracy and completeness. A transdisciplinary approach in Kaiserslautern, Germany, complements existing incomplete tree data with additional precise ... ver más
Revista: Applied Sciences

 
Fahim Sufi    
In the face of escalating cyber threats that have contributed significantly to global economic losses, this study presents a comprehensive dataset capturing the multifaceted nature of cyber-attacks across 225 countries over a 14-month period from October... ver más
Revista: Information

 
Yugen Yi, Haoming Zhang, Ningyi Zhang, Wei Zhou, Xiaomei Huang, Gengsheng Xie and Caixia Zheng    
As the feature dimension of data continues to expand, the task of selecting an optimal subset of features from a pool of limited labeled data and extensive unlabeled data becomes more and more challenging. In recent years, some semi-supervised feature se... ver más
Revista: Information

 
Zihang Xu and Chiawei Chu    
Ensuring the sustainability of transportation infrastructure for electric vehicles (e-trans) is increasingly imperative in the pursuit of decarbonization goals and addressing the pressing energy shortage. By prioritizing the development and maintenance o... ver más
Revista: Applied Sciences