Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  Algorithms  /  Vol: 16 Par: 3 (2023)  /  Artículo
ARTÍCULO
TITULO

Generative Adversarial Network for Overcoming Occlusion in Images: A Survey

Kaziwa Saleh    
Sándor Szénási and Zoltán Vámossy    

Resumen

Although current computer vision systems are closer to the human intelligence when it comes to comprehending the visible world than previously, their performance is hindered when objects are partially occluded. Since we live in a dynamic and complex environment, we encounter more occluded objects than fully visible ones. Therefore, instilling the capability of amodal perception into those vision systems is crucial. However, overcoming occlusion is difficult and comes with its own challenges. The generative adversarial network (GAN), on the other hand, is renowned for its generative power in producing data from a random noise distribution that approaches the samples that come from real data distributions. In this survey, we outline the existing works wherein GAN is utilized in addressing the challenges of overcoming occlusion, namely amodal segmentation, amodal content completion, order recovery, and acquiring training data. We provide a summary of the type of GAN, loss function, the dataset, and the results of each work. We present an overview of the implemented GAN architectures in various applications of amodal completion. We also discuss the common objective functions that are applied in training GAN for occlusion-handling tasks. Lastly, we discuss several open issues and potential future directions.

 Artículos similares

       
 
Zhe Yang, Yi Huang, Yaqin Chen, Xiaoting Wu, Junlan Feng and Chao Deng    
Controllable Text Generation (CTG) aims to modify the output of a Language Model (LM) to meet specific constraints. For example, in a customer service conversation, responses from the agent should ideally be soothing and address the user?s dissatisfactio... ver más
Revista: Applied Sciences

 
Ku Muhammad Naim Ku Khalif, Woo Chaw Seng, Alexander Gegov, Ahmad Syafadhli Abu Bakar and Nur Adibah Shahrul    
Convolutional Neural Networks (CNNs) have garnered significant utilisation within automated image classification systems. CNNs possess the ability to leverage the spatial and temporal correlations inherent in a dataset. This study delves into the use of ... ver más
Revista: Information

 
Pedro Celard, Adrián Seara Vieira, José Manuel Sorribes-Fdez, Eva Lorenzo Iglesias and Lourdes Borrajo    
In this study, we propose a novel Temporal Development Generative Adversarial Network (TD-GAN) for the generation and analysis of videos, with a particular focus on biological and medical applications. Inspired by Progressive Growing GAN (PG-GAN) and Tem... ver más
Revista: Information

 
Sara Rajaram and Cassie S. Mitchell    
The ability to translate Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs) into different modalities and data types is essential to improve Deep Learning (DL) for predictive medicine. This work presents DACMVA, a novel framework ... ver más
Revista: Information

 
Junlin Lou, Burak Yuksek, Gokhan Inalhan and Antonios Tsourdos    
In this study, we consider the problem of motion planning for urban air mobility applications to generate a minimal snap trajectory and trajectory that cost minimal time to reach a goal location in the presence of dynamic geo-fences and uncertainties in ... ver más
Revista: Aerospace