Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Infrastructures  /  Vol: 7 Par: 4 (2022)  /  Artículo
ARTÍCULO
TITULO

Experimental Study on the Physical and Mechanical Characteristics of Roller Compacted Concrete Made with Recycled Aggregates

Ali Kheirbek    
Ali Ibrahim    
Majed Asaad and George Wardeh    

Resumen

A huge volume of waste is generated by natural and human-made disasters and by rapid urbanization that leads to the demolition of structures reaching the end of their service life. Using recycled aggregates in concrete producing reduces environmental pollution by decreasing the disposal of this waste material in landfills and preserving unreasonable exploitation of natural resources. This manuscript presents the results of an experimental program aiming to study the effect of recycled aggregates on the physical and the mechanical properties of roller compacted concrete (RCC). A Dreux?Gorisse mix design method together with the modified proctor test were adopted to prepare a reference mixture with natural aggregates with three derived mixtures where coarse aggregates were replaced by 50%, 70%, and 100% of recycled aggregates. The physical properties of RCC were evaluated by means of water absorption and gas permeability tests while the mechanical properties were evaluated using compressive, tensile splitting and 3-point flexural tests. The results of physical tests showed that both water absorption ability and gas permeability increase proportionally with the replacement ratios. The results of the mechanical tests showed that the compressive strength class was approximately constant for all developed mixtures at the age of 28 days. For a substitution ratio of 100%, a drop in the compressive strength of only 6% was recorded. The reduction in the tensile and flexural strength was more pronounced than the compressive strength and was about 10% for the mixture of 100% recycled aggregates. It was found that the strength increases with time, and it can be estimated at any age using the analytical models adopted for conventional hydraulic concretes. Based on the obtained results, it was concluded that recycled aggregates up to 50% don?t negatively affect the physical and mechanical properties of RCC.

 Artículos similares

       
 
Zhike Zou, Longcang Shu, Xing Min and Esther Chifuniro Mabedi    
The artificial recharge of stormwater is an effective approach for replenishing aquifer and reduce urban waterlogging, but prone to clogging by suspended particles (SP) that are highly heterogeneously sized. In this paper, the transport and deposition of... ver más
Revista: Water

 
Zuhier Alakayleh, Xing Fang and T. Prabhakar Clement    
This study aims at furthering our understanding of the Modified Philip?Dunne Infiltrometer (MPDI), which is used to determine the saturated hydraulic conductivity Ks and the Green?Ampt suction head ? at the wetting front. We have developed a forward-mode... ver más
Revista: Water

 
Ewa Stanczyk-Mazanek, Longina Stepniak and Urszula Kepa    
In this paper, we discuss the effect sewage sludge (SS) application has on the contamination of polycyclic aromatic hydrocarbons in fertilized soils and groundwater. Morver, the contents of these compounds in plant biomass was analyzed. For six months, c... ver más
Revista: Water

 
Xiaoni Yang, Juanjuan Ma, Yongye Li, Xihuan Sun, Xiaomeng Jia and Yonggang Li    
Hydraulic transportation of the piped carriage is a new energy-saving and environmentally-friendly transportation mode. There are two main states in the conveying process, stationary and moving. In the process of hydraulic transportation of the piped car... ver más
Revista: Water

 
Taufiq Saidi,Taufiq Saidi,Muttaqin Hasan,Muttaqin Hasan,Zahra Amalia,Muhammad Iqbal,Muhammad Iqbal     Pág. 155 - 164
The use of synthetic Fiber Reinforced Polymer (FRP) as a composite material is an alternative material that has been widely used for strengthening and repairing reinforced concrete structures. However, the high price is one of the obstacles in applying s... ver más